Tianmei Niu , Jiaxin Wang , Liying Xun , Bingqing Zheng , Zhipeng Deng , Zhi Chen , Kaijie Jia , Pan Zhao , Qitao Zhao
{"title":"通过LC-MS/MS、网络药理学分析和体外验证,破译Cortex Juglandis Mandshuricae总黄酮对酒精性脂肪肝的影响和机制","authors":"Tianmei Niu , Jiaxin Wang , Liying Xun , Bingqing Zheng , Zhipeng Deng , Zhi Chen , Kaijie Jia , Pan Zhao , Qitao Zhao","doi":"10.1016/j.jchromb.2024.124334","DOIUrl":null,"url":null,"abstract":"<div><div>The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1248 ","pages":"Article 124334"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the impact and mechanism of total flavonoids from Cortex Juglandis Mandshuricae on alcoholic fatty liver employing LC-MS/MS, network pharmacology analysis and in vitro validation\",\"authors\":\"Tianmei Niu , Jiaxin Wang , Liying Xun , Bingqing Zheng , Zhipeng Deng , Zhi Chen , Kaijie Jia , Pan Zhao , Qitao Zhao\",\"doi\":\"10.1016/j.jchromb.2024.124334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.</div></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1248 \",\"pages\":\"Article 124334\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157002322400343X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157002322400343X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deciphering the impact and mechanism of total flavonoids from Cortex Juglandis Mandshuricae on alcoholic fatty liver employing LC-MS/MS, network pharmacology analysis and in vitro validation
The Cortex Juglandis Mandshuricae (CJM) has the efficacy of penetrating the liver meridian, removing heat and dampness, and alleviating the liver, which corresponds to the pathogenesis of alcoholic fatty liver disease (AFLD) with damp heat accumulation. Modern research has shown that total flavonoids from Cortex Juglandis Mandshuricae (TFC) have hepatoprotective, antioxidant and antitumour pharmacological effects. However, there is no any investigation on the mechanism of TFC improving AFLD. In this work, a valid strategy combining UPLC-Q-Exactive Orbitrap-MS, network pharmacology and in vitro cellular experimental validation is proposed to predict the targets and pathways of TFC to ameliorate AFLD and to explore its mechanism of action. As a result, 26 flavonoids and 182 targets linked to TFC and AFLD were identified. These compounds realize their critical targets via various signaling pathways and perform multiple biological functions on the basis of the constructed compound-disease target networks. In vitro experiments demonstrated TFC had a protective impact on ethanol-treated L02 cells to a certain extent and could diminished lipid accretion. In addition, RT-qPCR and western blot results illustrated that TFC could regulate the expression of PPARα, CPT-1, SREBP-1c and FAS, and inhibit alcohol-induced lipid accumulation in L02 cells thereby alleviating AFLD. The present study further provides experimental justification for TFC to ameliorate AFLD in practical applications.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.