Francisco Bevilacqua, Robin Girod, Victor F Martín, Manuel Obelleiro-Liz, Gail A Vinnacombe-Willson, Kyle Van Gordon, Johan Hofkens, Jose Manuel Taboada, Sara Bals, Luis M Liz-Marzán
{"title":"从五孪晶纳米棒无添加合成(手性)金双锥体。","authors":"Francisco Bevilacqua, Robin Girod, Victor F Martín, Manuel Obelleiro-Liz, Gail A Vinnacombe-Willson, Kyle Van Gordon, Johan Hofkens, Jose Manuel Taboada, Sara Bals, Luis M Liz-Marzán","doi":"10.1021/acsmaterialslett.4c01605","DOIUrl":null,"url":null,"abstract":"<p><p>The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g., in biology or catalysis. We report herein the preparation of gold bipyramids with no need for additives and shape yields up to 99%, using pentatwinned Au nanorods as seeds and cetyltrimethylammonium chloride as surfactant. For high-growth solution:seed ratios, the bipyramids exhibit an unusual \"belted\" structure. Three-dimensional electron microscopy revealed the presence of high-index {117}, {115}, and {113} side facets, with {113} and {112} facets at the belt. Belted bipyramids exhibit strong near-field enhancement and high extinction in the near-infrared, in agreement with electromagnetic simulations. These Ag-free bipyramids were used to seed chiral overgrowth using 1,1'-binaphthyl-2,2'-diamine as a chiral inducer, with <i>g</i>-factor up to 0.02, likely the highest reported for bipyramid seeds so far.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5163-5169"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539099/pdf/","citationCount":"0","resultStr":"{\"title\":\"Additive-Free Synthesis of (Chiral) Gold Bipyramids from Pentatwinned Nanorods.\",\"authors\":\"Francisco Bevilacqua, Robin Girod, Victor F Martín, Manuel Obelleiro-Liz, Gail A Vinnacombe-Willson, Kyle Van Gordon, Johan Hofkens, Jose Manuel Taboada, Sara Bals, Luis M Liz-Marzán\",\"doi\":\"10.1021/acsmaterialslett.4c01605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g., in biology or catalysis. We report herein the preparation of gold bipyramids with no need for additives and shape yields up to 99%, using pentatwinned Au nanorods as seeds and cetyltrimethylammonium chloride as surfactant. For high-growth solution:seed ratios, the bipyramids exhibit an unusual \\\"belted\\\" structure. Three-dimensional electron microscopy revealed the presence of high-index {117}, {115}, and {113} side facets, with {113} and {112} facets at the belt. Belted bipyramids exhibit strong near-field enhancement and high extinction in the near-infrared, in agreement with electromagnetic simulations. These Ag-free bipyramids were used to seed chiral overgrowth using 1,1'-binaphthyl-2,2'-diamine as a chiral inducer, with <i>g</i>-factor up to 0.02, likely the highest reported for bipyramid seeds so far.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"6 11\",\"pages\":\"5163-5169\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c01605\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01605","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在生产具有复杂几何形状的胶体金属纳米结构时,通常需要使用金属离子或硫醇等形状定向添加剂来稳定高指数刻面。然而,这些添加剂可能会影响纳米粒子的表面化学性质,从而阻碍其在生物或催化等领域的应用。我们在本文中报告了无需添加剂的金双锥体制备方法,以五孪晶金纳米棒为种子,十六烷基三甲基氯化铵为表面活性剂,制备出的金双锥体形状良率高达 99%。在高生长溶液与种子比的情况下,双锥体呈现出一种不寻常的 "带状 "结构。三维电子显微镜显示存在高指数的{117}、{115}和{113}侧刻面,带状刻面为{113}和{112}。带状双锥体表现出很强的近场增强能力和很高的近红外消光能力,这与电磁模拟结果一致。使用 1,1'- 联萘-2,2'-二胺作为手性诱导剂,这些无银双锥体被用来作为手性过度生长的种子,其 g 因子高达 0.02,这可能是迄今为止报道的双锥体种子的最高值。
Additive-Free Synthesis of (Chiral) Gold Bipyramids from Pentatwinned Nanorods.
The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g., in biology or catalysis. We report herein the preparation of gold bipyramids with no need for additives and shape yields up to 99%, using pentatwinned Au nanorods as seeds and cetyltrimethylammonium chloride as surfactant. For high-growth solution:seed ratios, the bipyramids exhibit an unusual "belted" structure. Three-dimensional electron microscopy revealed the presence of high-index {117}, {115}, and {113} side facets, with {113} and {112} facets at the belt. Belted bipyramids exhibit strong near-field enhancement and high extinction in the near-infrared, in agreement with electromagnetic simulations. These Ag-free bipyramids were used to seed chiral overgrowth using 1,1'-binaphthyl-2,2'-diamine as a chiral inducer, with g-factor up to 0.02, likely the highest reported for bipyramid seeds so far.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.