经分子鉴定的猕猴普鲁曼中刺神经元的独特生理机能

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen
{"title":"经分子鉴定的猕猴普鲁曼中刺神经元的独特生理机能","authors":"Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen","doi":"10.1016/j.celrep.2024.114963","DOIUrl":null,"url":null,"abstract":"<p><p>The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen.\",\"authors\":\"Jonathan T Ting, Nelson J Johansen, Brian E Kalmbach, Naz Taskin, Brian Lee, Jason K Clark, Rennie Kendrick, Lindsay Ng, Cristina Radaelli, Natalie Weed, Rachel Enstrom, Shea Ransford, Ingrid Redford, Sarah Walling-Bell, Rachel Dalley, Michael Tieu, Jeff Goldy, Nik Jorstad, Kimberly Smith, Trygve Bakken, Ed S Lein, Scott F Owen\",\"doi\":\"10.1016/j.celrep.2024.114963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114963\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纹状体中刺神经元(MSN)的独特生理结构是其整合感觉和运动输入能力的基础。在啮齿类动物中,MSN 具有超极化静息电位和低输入阻抗。当被激活时,它们具有延迟的尖峰起始和规律的尖峰率。在这里,我们发现相对于小鼠,猕猴丘脑的尖峰潜伏期缩短,尖峰率适应性增强。我们使用全细胞脑片记录,并使用 Patch-seq 恢复单细胞基因表达,以区分猕猴 MSN 细胞类型。包括钙激活氯离子通道 ANO2 和 A 型钾通道辅助亚基 DPP10 在内的离子通道基因表达的物种差异分别与尖峰率适应性和首次尖峰潜伏期的物种差异相关。这些令人惊讶的生理学差异更好地说明了小鼠模型在了解灵长类基底神经节神经元和电路功能方面的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen.

The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信