Yuan Feng , Jinlin Chen , Xiao Wang , Chao Long , Wenbo Wang , Jingjing Lin , Yuanyuan He , Yanchao Wang , Feng Luo , Zhen Li , Jiehua Li , Hong Tan
{"title":"通过水性聚乳酸-聚氨酯共聚物支架重编程神经再生代谢微环境。","authors":"Yuan Feng , Jinlin Chen , Xiao Wang , Chao Long , Wenbo Wang , Jingjing Lin , Yuanyuan He , Yanchao Wang , Feng Luo , Zhen Li , Jiehua Li , Hong Tan","doi":"10.1016/j.biomaterials.2024.122942","DOIUrl":null,"url":null,"abstract":"<div><div>Cell metabolism, as the key driver of inflammation, revascularization and even subsequent tissue regeneration, is controlled by and also conversely influenced by signal transduction. Incorporation of cell metabolism into tissue engineering research holds immense potential for in-situ treatment repair and further understanding of the host-biomaterial cues in body response. In this study, an anti-inflammatory waterborne polyurethane scaffold incorporated with poly-<span>l</span>-lactic acid (PLLA) block was served to repair nerve injuries (LAx-WPU). Lactate was released through the degradation of LAx-WPU scaffolds, and the content increased with the addition of PLLA block over the degradation times. Thenceforth, the production of adenosine triphosphate (ATP) in primary neurons and neuronal axon growth were achieved by taking up lactate through monocarboxylate transporters (MCT2) for energy metabolism under glucose-free environment treated with LAx-WPU degradation solution. After LAx-WPU was implanted to repair brain nerve defects in rats, filamentous neurons elongation, rapid vascularization, and nerve tissue regeneration were realized up to 28 days with the positive expression of microtubule-associated protein (MAP2), β-tubulin (Tuj1), and platelet endothelial cell adhesion molecule (CD31) in the scaffolds. Results highlighted that the LAx-WPU scaffolds up-regulated not only the ATP-ADP-AMP purine metabolism compounds to mainly bridge neuroactive ligand-receptor interaction genes, cAMP pathway genes, and calcium pathway genes for neurocytes but also the ATP-GMP purine metabolism to angiogenesis in Gene Ontology (GO) analysis. Further analysis in reverse showed axonal regeneration is restrained by the inhibition of MCT2, proving LAx-WPU promoted nerve repair depended on lactate for energy. Therefore, LAx-WPU scaffolds construct an expected way to modulate the metabolic microenvironment for inducing nerve regeneration by intrinsic biomaterial metabolism cues without any bioactive factors.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122942"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reprogramming metabolic microenvironment for nerve regeneration via waterborne polylactic acid-polyurethane copolymer scaffolds\",\"authors\":\"Yuan Feng , Jinlin Chen , Xiao Wang , Chao Long , Wenbo Wang , Jingjing Lin , Yuanyuan He , Yanchao Wang , Feng Luo , Zhen Li , Jiehua Li , Hong Tan\",\"doi\":\"10.1016/j.biomaterials.2024.122942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cell metabolism, as the key driver of inflammation, revascularization and even subsequent tissue regeneration, is controlled by and also conversely influenced by signal transduction. Incorporation of cell metabolism into tissue engineering research holds immense potential for in-situ treatment repair and further understanding of the host-biomaterial cues in body response. In this study, an anti-inflammatory waterborne polyurethane scaffold incorporated with poly-<span>l</span>-lactic acid (PLLA) block was served to repair nerve injuries (LAx-WPU). Lactate was released through the degradation of LAx-WPU scaffolds, and the content increased with the addition of PLLA block over the degradation times. Thenceforth, the production of adenosine triphosphate (ATP) in primary neurons and neuronal axon growth were achieved by taking up lactate through monocarboxylate transporters (MCT2) for energy metabolism under glucose-free environment treated with LAx-WPU degradation solution. After LAx-WPU was implanted to repair brain nerve defects in rats, filamentous neurons elongation, rapid vascularization, and nerve tissue regeneration were realized up to 28 days with the positive expression of microtubule-associated protein (MAP2), β-tubulin (Tuj1), and platelet endothelial cell adhesion molecule (CD31) in the scaffolds. Results highlighted that the LAx-WPU scaffolds up-regulated not only the ATP-ADP-AMP purine metabolism compounds to mainly bridge neuroactive ligand-receptor interaction genes, cAMP pathway genes, and calcium pathway genes for neurocytes but also the ATP-GMP purine metabolism to angiogenesis in Gene Ontology (GO) analysis. Further analysis in reverse showed axonal regeneration is restrained by the inhibition of MCT2, proving LAx-WPU promoted nerve repair depended on lactate for energy. Therefore, LAx-WPU scaffolds construct an expected way to modulate the metabolic microenvironment for inducing nerve regeneration by intrinsic biomaterial metabolism cues without any bioactive factors.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"315 \",\"pages\":\"Article 122942\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961224004770\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004770","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Reprogramming metabolic microenvironment for nerve regeneration via waterborne polylactic acid-polyurethane copolymer scaffolds
Cell metabolism, as the key driver of inflammation, revascularization and even subsequent tissue regeneration, is controlled by and also conversely influenced by signal transduction. Incorporation of cell metabolism into tissue engineering research holds immense potential for in-situ treatment repair and further understanding of the host-biomaterial cues in body response. In this study, an anti-inflammatory waterborne polyurethane scaffold incorporated with poly-l-lactic acid (PLLA) block was served to repair nerve injuries (LAx-WPU). Lactate was released through the degradation of LAx-WPU scaffolds, and the content increased with the addition of PLLA block over the degradation times. Thenceforth, the production of adenosine triphosphate (ATP) in primary neurons and neuronal axon growth were achieved by taking up lactate through monocarboxylate transporters (MCT2) for energy metabolism under glucose-free environment treated with LAx-WPU degradation solution. After LAx-WPU was implanted to repair brain nerve defects in rats, filamentous neurons elongation, rapid vascularization, and nerve tissue regeneration were realized up to 28 days with the positive expression of microtubule-associated protein (MAP2), β-tubulin (Tuj1), and platelet endothelial cell adhesion molecule (CD31) in the scaffolds. Results highlighted that the LAx-WPU scaffolds up-regulated not only the ATP-ADP-AMP purine metabolism compounds to mainly bridge neuroactive ligand-receptor interaction genes, cAMP pathway genes, and calcium pathway genes for neurocytes but also the ATP-GMP purine metabolism to angiogenesis in Gene Ontology (GO) analysis. Further analysis in reverse showed axonal regeneration is restrained by the inhibition of MCT2, proving LAx-WPU promoted nerve repair depended on lactate for energy. Therefore, LAx-WPU scaffolds construct an expected way to modulate the metabolic microenvironment for inducing nerve regeneration by intrinsic biomaterial metabolism cues without any bioactive factors.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.