通过量子动力学理论探测铟框架内的平面四配位氢。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xingyu Zhang, Zekai Miao, Qingyong Meng
{"title":"通过量子动力学理论探测铟框架内的平面四配位氢。","authors":"Xingyu Zhang, Zekai Miao, Qingyong Meng","doi":"10.1021/acs.jpca.4c06742","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we consider the question how to detect the planar tetracoordination hydrogen geometry which was recently proposed by electronic structure calculations on the In<sub>4</sub>H<sup>+</sup> system (<i>Angew. Chem. Int. Ed.</i> <b>2024</b>, <i>63</i>, e202317312; e202400927; e202403214). Keeping the <i>C</i><sub>4v</sub> symmetry, a two-dimensional model of In<sub>4</sub>H<sup>+</sup> is designed to build the nonadiabatic Hamiltonian operator with the lowest-lying singlet and triplet states coupled with spin-orbit coupling. The electronic energies in fitting the potential energy matrix are computed at either the MRCI or CCSD (T) level. Having constructed Hamiltonian, the multiconfigurational time-dependent Hartree product method predicts vibrational eigenstates for spectrum and recrossing probability of the proton. These quantum dynamics calculations predict a period of ∼60 fs for the proton recrossing the In<sub>4</sub> moiety and further indicate that experimental observation of the <i>D</i><sub>4h</sub> geometry for the triplet state is highly probable at room temperature even though the present MRCI and previous CASPT2 calculations (<i>Angew. Chem. Int. Ed.</i> <b>2024</b>, <i>63</i>, e202400927) both predict the <i>C</i><sub>4v</sub> symmetry. To measure the <i>C</i><sub>4v</sub> geometry, a low temperature of ≲30 K could be adopted. Despite the low temperature, the experiment might still miss the <i>C</i><sub>4v</sub> geometry due to the nonzero recrossing probability of H at the low kinetic energy region. Further, a new type of hydrogen bonding in the <i>D</i><sub>4h</sub> geometry is proposed to explain the interaction between the <i>C</i><sub>4v</sub> geometries.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of a Planar Tetracoordinate Hydrogen within the Indium Framework by Quantum Dynamics Theory.\",\"authors\":\"Xingyu Zhang, Zekai Miao, Qingyong Meng\",\"doi\":\"10.1021/acs.jpca.4c06742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we consider the question how to detect the planar tetracoordination hydrogen geometry which was recently proposed by electronic structure calculations on the In<sub>4</sub>H<sup>+</sup> system (<i>Angew. Chem. Int. Ed.</i> <b>2024</b>, <i>63</i>, e202317312; e202400927; e202403214). Keeping the <i>C</i><sub>4v</sub> symmetry, a two-dimensional model of In<sub>4</sub>H<sup>+</sup> is designed to build the nonadiabatic Hamiltonian operator with the lowest-lying singlet and triplet states coupled with spin-orbit coupling. The electronic energies in fitting the potential energy matrix are computed at either the MRCI or CCSD (T) level. Having constructed Hamiltonian, the multiconfigurational time-dependent Hartree product method predicts vibrational eigenstates for spectrum and recrossing probability of the proton. These quantum dynamics calculations predict a period of ∼60 fs for the proton recrossing the In<sub>4</sub> moiety and further indicate that experimental observation of the <i>D</i><sub>4h</sub> geometry for the triplet state is highly probable at room temperature even though the present MRCI and previous CASPT2 calculations (<i>Angew. Chem. Int. Ed.</i> <b>2024</b>, <i>63</i>, e202400927) both predict the <i>C</i><sub>4v</sub> symmetry. To measure the <i>C</i><sub>4v</sub> geometry, a low temperature of ≲30 K could be adopted. Despite the low temperature, the experiment might still miss the <i>C</i><sub>4v</sub> geometry due to the nonzero recrossing probability of H at the low kinetic energy region. Further, a new type of hydrogen bonding in the <i>D</i><sub>4h</sub> geometry is proposed to explain the interaction between the <i>C</i><sub>4v</sub> geometries.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c06742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了如何检测平面四配位氢几何形状的问题,该几何形状是最近通过 In4H+ 系统的电子结构计算提出的 (Angew. Chem. Int. Ed. 2024, 63, e202317312; e202400927; e202403214)。在保持 C4v 对称性的前提下,我们设计了一个 In4H+ 的二维模型来建立非绝热哈密顿算子,其中包含与自旋轨道耦合相耦合的最低级单态和三重态。拟合势能矩阵的电子能量是在 MRCI 或 CCSD (T) 水平上计算的。在构建了哈密尔顿之后,多构型时间相关哈特里积方法预测了质子的光谱和再交叉概率的振动特征状态。这些量子动力学计算预测质子重新穿过 In4 分子的周期为 60 fs,并进一步表明,尽管目前的 MRCI 和之前的 CASPT2 计算(Angew.为了测量 C4v 几何结构,可以采用≲30 K 的低温。尽管温度很低,但由于 H 在低动能区域的非零重交概率,实验仍有可能错过 C4v 几何结构。此外,还提出了 D4h 几何结构中的一种新型氢键,以解释 C4v 几何结构之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of a Planar Tetracoordinate Hydrogen within the Indium Framework by Quantum Dynamics Theory.

In this work, we consider the question how to detect the planar tetracoordination hydrogen geometry which was recently proposed by electronic structure calculations on the In4H+ system (Angew. Chem. Int. Ed. 2024, 63, e202317312; e202400927; e202403214). Keeping the C4v symmetry, a two-dimensional model of In4H+ is designed to build the nonadiabatic Hamiltonian operator with the lowest-lying singlet and triplet states coupled with spin-orbit coupling. The electronic energies in fitting the potential energy matrix are computed at either the MRCI or CCSD (T) level. Having constructed Hamiltonian, the multiconfigurational time-dependent Hartree product method predicts vibrational eigenstates for spectrum and recrossing probability of the proton. These quantum dynamics calculations predict a period of ∼60 fs for the proton recrossing the In4 moiety and further indicate that experimental observation of the D4h geometry for the triplet state is highly probable at room temperature even though the present MRCI and previous CASPT2 calculations (Angew. Chem. Int. Ed. 2024, 63, e202400927) both predict the C4v symmetry. To measure the C4v geometry, a low temperature of ≲30 K could be adopted. Despite the low temperature, the experiment might still miss the C4v geometry due to the nonzero recrossing probability of H at the low kinetic energy region. Further, a new type of hydrogen bonding in the D4h geometry is proposed to explain the interaction between the C4v geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信