Seon Ju Park, Soo Min Lee, Jiwoo Lee, Sungkyun Choi, Gi Baek Nam, Yong Kun Jo, In-Sung Hwang, Ho Won Jang
{"title":"用于超选择性氢气和氨气双重检测的 Pd-W18O49 纳米线 MEMS 气体传感器。","authors":"Seon Ju Park, Soo Min Lee, Jiwoo Lee, Sungkyun Choi, Gi Baek Nam, Yong Kun Jo, In-Sung Hwang, Ho Won Jang","doi":"10.1002/smll.202405809","DOIUrl":null,"url":null,"abstract":"<p><p>Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed. A Pd nanoparticles-decorated W<sub>18</sub>O<sub>49</sub> nanowire gas sensor is prepared for dual detection of hydrogen and ammonia. The sensor exhibits distinct operating temperatures for ultraselective detection of hydrogen (125 °C) and ammonia (225 °C), with high responses of 35.3 and 133.8, respectively. This dual selectivity with high sensitivity is attributed to enhanced oxygen adsorption, the chemical affinity of sensing materials for target gases, and distinct reactivity profiles of gases. The proposed sensor is further integrated into a microelectromechanical system, enabling its small size, low power consumption, and rapid temperature modulation. Moreover, the practical feasibility of this sensor platform for smart energy monitoring systems is demonstrated by assessing its sensing properties in electrochemical ammonia oxidation reaction systems. This work can provide a practical approach for developing a single gas sensor with multiple functionalities for application in electronic nose systems.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2405809"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd-W<sub>18</sub>O<sub>49</sub> Nanowire MEMS Gas Sensor for Ultraselective Dual Detection of Hydrogen and Ammonia.\",\"authors\":\"Seon Ju Park, Soo Min Lee, Jiwoo Lee, Sungkyun Choi, Gi Baek Nam, Yong Kun Jo, In-Sung Hwang, Ho Won Jang\",\"doi\":\"10.1002/smll.202405809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed. A Pd nanoparticles-decorated W<sub>18</sub>O<sub>49</sub> nanowire gas sensor is prepared for dual detection of hydrogen and ammonia. The sensor exhibits distinct operating temperatures for ultraselective detection of hydrogen (125 °C) and ammonia (225 °C), with high responses of 35.3 and 133.8, respectively. This dual selectivity with high sensitivity is attributed to enhanced oxygen adsorption, the chemical affinity of sensing materials for target gases, and distinct reactivity profiles of gases. The proposed sensor is further integrated into a microelectromechanical system, enabling its small size, low power consumption, and rapid temperature modulation. Moreover, the practical feasibility of this sensor platform for smart energy monitoring systems is demonstrated by assessing its sensing properties in electrochemical ammonia oxidation reaction systems. This work can provide a practical approach for developing a single gas sensor with multiple functionalities for application in electronic nose systems.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2405809\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202405809\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pd-W18O49 Nanowire MEMS Gas Sensor for Ultraselective Dual Detection of Hydrogen and Ammonia.
Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed. A Pd nanoparticles-decorated W18O49 nanowire gas sensor is prepared for dual detection of hydrogen and ammonia. The sensor exhibits distinct operating temperatures for ultraselective detection of hydrogen (125 °C) and ammonia (225 °C), with high responses of 35.3 and 133.8, respectively. This dual selectivity with high sensitivity is attributed to enhanced oxygen adsorption, the chemical affinity of sensing materials for target gases, and distinct reactivity profiles of gases. The proposed sensor is further integrated into a microelectromechanical system, enabling its small size, low power consumption, and rapid temperature modulation. Moreover, the practical feasibility of this sensor platform for smart energy monitoring systems is demonstrated by assessing its sensing properties in electrochemical ammonia oxidation reaction systems. This work can provide a practical approach for developing a single gas sensor with multiple functionalities for application in electronic nose systems.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.