Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña-Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht
{"title":"离子迁移对基于包晶石的串联太阳能电池的性能和稳定性的影响","authors":"Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña-Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht","doi":"10.1002/aenm.202400720","DOIUrl":null,"url":null,"abstract":"The stability of perovskite-based tandem solar cells (TSCs) is the last major scientific/technical challenge to be overcome before commercialization. Understanding the impact of mobile ions on the TSC performance is key to minimizing degradation. Here, a comprehensive study that combines an experimental analysis of ionic losses in Si/perovskite and all-perovskite TSCs using scan-rate-dependent current–voltage (<i>J–V</i>) measurements with drift-diffusion simulations is presented. The findings demonstrate that mobile ions have a significant influence on the tandem cell performance lowering the ion-freeze power conversion efficiency from >31% for Si/perovskite and >30% for all-perovskite tandems to ≈28% in steady-state. Moreover, the ions cause a substantial hysteresis in Si/perovskite TSCs at high scan speeds (400 s<sup>−1</sup>), and significantly influence the performance degradation of both devices through internal field screening. Additionally, for all-perovskite tandems, subcell-dominated <i>J–V</i> characterization reveals more pronounced ionic losses in the wide-bandgap subcell during aging, which is attributed to its tendency for halide segregation. This work provides valuable insights into ionic losses in perovskite-based TSCs which helps to separate ion migration-related degradation modes from other degradation mechanisms and guides targeted interventions for enhanced subcell efficiency and stability.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"38 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Ion Migration on the Performance and Stability of Perovskite-Based Tandem Solar Cells\",\"authors\":\"Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña-Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht\",\"doi\":\"10.1002/aenm.202400720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of perovskite-based tandem solar cells (TSCs) is the last major scientific/technical challenge to be overcome before commercialization. Understanding the impact of mobile ions on the TSC performance is key to minimizing degradation. Here, a comprehensive study that combines an experimental analysis of ionic losses in Si/perovskite and all-perovskite TSCs using scan-rate-dependent current–voltage (<i>J–V</i>) measurements with drift-diffusion simulations is presented. The findings demonstrate that mobile ions have a significant influence on the tandem cell performance lowering the ion-freeze power conversion efficiency from >31% for Si/perovskite and >30% for all-perovskite tandems to ≈28% in steady-state. Moreover, the ions cause a substantial hysteresis in Si/perovskite TSCs at high scan speeds (400 s<sup>−1</sup>), and significantly influence the performance degradation of both devices through internal field screening. Additionally, for all-perovskite tandems, subcell-dominated <i>J–V</i> characterization reveals more pronounced ionic losses in the wide-bandgap subcell during aging, which is attributed to its tendency for halide segregation. This work provides valuable insights into ionic losses in perovskite-based TSCs which helps to separate ion migration-related degradation modes from other degradation mechanisms and guides targeted interventions for enhanced subcell efficiency and stability.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202400720\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202400720","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Impact of Ion Migration on the Performance and Stability of Perovskite-Based Tandem Solar Cells
The stability of perovskite-based tandem solar cells (TSCs) is the last major scientific/technical challenge to be overcome before commercialization. Understanding the impact of mobile ions on the TSC performance is key to minimizing degradation. Here, a comprehensive study that combines an experimental analysis of ionic losses in Si/perovskite and all-perovskite TSCs using scan-rate-dependent current–voltage (J–V) measurements with drift-diffusion simulations is presented. The findings demonstrate that mobile ions have a significant influence on the tandem cell performance lowering the ion-freeze power conversion efficiency from >31% for Si/perovskite and >30% for all-perovskite tandems to ≈28% in steady-state. Moreover, the ions cause a substantial hysteresis in Si/perovskite TSCs at high scan speeds (400 s−1), and significantly influence the performance degradation of both devices through internal field screening. Additionally, for all-perovskite tandems, subcell-dominated J–V characterization reveals more pronounced ionic losses in the wide-bandgap subcell during aging, which is attributed to its tendency for halide segregation. This work provides valuable insights into ionic losses in perovskite-based TSCs which helps to separate ion migration-related degradation modes from other degradation mechanisms and guides targeted interventions for enhanced subcell efficiency and stability.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.