Angus Pedersen, Rifael Z. Snitkoff-Sol, Yan Presman, Laetitia Dubau, Rongsheng Cai, Jesús Barrio, Sarah J. Haigh, Frédéric Maillard, Ifan E. L. Stephens, Maria-Magdalena Titirici, Lior Elbaz
{"title":"质子交换膜燃料电池中的 Fe-N-C:离子聚合物负载对降解和稳定性的影响","authors":"Angus Pedersen, Rifael Z. Snitkoff-Sol, Yan Presman, Laetitia Dubau, Rongsheng Cai, Jesús Barrio, Sarah J. Haigh, Frédéric Maillard, Ifan E. L. Stephens, Maria-Magdalena Titirici, Lior Elbaz","doi":"10.1002/aenm.202403920","DOIUrl":null,"url":null,"abstract":"Fe single atoms in N-doped C (Fe-N-C) present the most promising replacement for carbon-supported Pt-based catalysts for the O<sub>2</sub> reduction reaction at the cathode of proton exchange membrane fuel cells (PEMFCs). However, it remains unclear how the I/C ratio affects Fe-N-C degradation and the stability of single Fe atom active sites (FeN<sub>x</sub>). Here, an accelerated stress test (AST) protocol is combined with emerging electrochemical techniques for a porous Fe-N-C in PEMFC with a range of I/C ratios. The PEMFC current density degradation rates are found to be comparable; however, with increased I/C ratio the additional FeN<sub>x</sub> sites accessed are more stable, as shown by their higher active site stability number (electrons passed per FeN<sub>x</sub> lost) at the end of the AST protocol. Meanwhile, the initial rate of TOF decay is suppressed with increasing I/C. Electrochemical process changes are studied via distribution of relaxation times analysis. Minor changes in H<sup>+</sup> and O<sub>2</sub> transport resistance at low current density prove kinetic degradation dominants at high potentials. These findings demonstrate how electrochemical techniques can be combined with stability metrics to determine and deconvolute changes from the active site to device level electrochemical processes in PEMFCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-N-C in Proton Exchange Membrane Fuel Cells: Impact of Ionomer Loading on Degradation and Stability\",\"authors\":\"Angus Pedersen, Rifael Z. Snitkoff-Sol, Yan Presman, Laetitia Dubau, Rongsheng Cai, Jesús Barrio, Sarah J. Haigh, Frédéric Maillard, Ifan E. L. Stephens, Maria-Magdalena Titirici, Lior Elbaz\",\"doi\":\"10.1002/aenm.202403920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe single atoms in N-doped C (Fe-N-C) present the most promising replacement for carbon-supported Pt-based catalysts for the O<sub>2</sub> reduction reaction at the cathode of proton exchange membrane fuel cells (PEMFCs). However, it remains unclear how the I/C ratio affects Fe-N-C degradation and the stability of single Fe atom active sites (FeN<sub>x</sub>). Here, an accelerated stress test (AST) protocol is combined with emerging electrochemical techniques for a porous Fe-N-C in PEMFC with a range of I/C ratios. The PEMFC current density degradation rates are found to be comparable; however, with increased I/C ratio the additional FeN<sub>x</sub> sites accessed are more stable, as shown by their higher active site stability number (electrons passed per FeN<sub>x</sub> lost) at the end of the AST protocol. Meanwhile, the initial rate of TOF decay is suppressed with increasing I/C. Electrochemical process changes are studied via distribution of relaxation times analysis. Minor changes in H<sup>+</sup> and O<sub>2</sub> transport resistance at low current density prove kinetic degradation dominants at high potentials. These findings demonstrate how electrochemical techniques can be combined with stability metrics to determine and deconvolute changes from the active site to device level electrochemical processes in PEMFCs.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403920\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403920","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fe-N-C in Proton Exchange Membrane Fuel Cells: Impact of Ionomer Loading on Degradation and Stability
Fe single atoms in N-doped C (Fe-N-C) present the most promising replacement for carbon-supported Pt-based catalysts for the O2 reduction reaction at the cathode of proton exchange membrane fuel cells (PEMFCs). However, it remains unclear how the I/C ratio affects Fe-N-C degradation and the stability of single Fe atom active sites (FeNx). Here, an accelerated stress test (AST) protocol is combined with emerging electrochemical techniques for a porous Fe-N-C in PEMFC with a range of I/C ratios. The PEMFC current density degradation rates are found to be comparable; however, with increased I/C ratio the additional FeNx sites accessed are more stable, as shown by their higher active site stability number (electrons passed per FeNx lost) at the end of the AST protocol. Meanwhile, the initial rate of TOF decay is suppressed with increasing I/C. Electrochemical process changes are studied via distribution of relaxation times analysis. Minor changes in H+ and O2 transport resistance at low current density prove kinetic degradation dominants at high potentials. These findings demonstrate how electrochemical techniques can be combined with stability metrics to determine and deconvolute changes from the active site to device level electrochemical processes in PEMFCs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.