Panpan Li, Lifan Shen, Yuhang Zhang, Desheng Li, Edwin Yue Bun Pun, Hai Lin
{"title":"基于 Perovskite 磷光体的激光控制信息释放和隐藏技术","authors":"Panpan Li, Lifan Shen, Yuhang Zhang, Desheng Li, Edwin Yue Bun Pun, Hai Lin","doi":"10.1021/acsami.4c17038","DOIUrl":null,"url":null,"abstract":"Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. Cs<sub>2</sub>NaInCl<sub>6</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy. The fluorescence intensity crossover and outstanding photon output capacity are revealed in comparison with Er<sup>3+</sup>/Yb<sup>3+</sup> codoped and Er<sup>3+</sup> single-doped CNIC phosphors under different laser sources, and the obvious difference in quantum yields (QY) under 980 and 1530 nm excitation provides theoretical possibility for LIRH. More importantly, the obtained LIRH features high stability at temperatures up to 413 K, showing good adaptability in various potential scenarios. Moreover, CNIC:Er, Yb is further combined with polyacrylonitrile (PAN) polymer to form fluorescent fibers with exceptional crystal stability and composite flexibility, thus making the LIRH code a reality based on perovskite composite phosphors. The laser-active invisibility offers an innovative idea for LIRH, further extending the application of LIRH in the field of information encryption, which has promising prospects in information safety, advanced anticounterfeiting, and smart responsive materials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"63 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Controlled Information Releasing and Hiding Based on Perovskite Phosphors\",\"authors\":\"Panpan Li, Lifan Shen, Yuhang Zhang, Desheng Li, Edwin Yue Bun Pun, Hai Lin\",\"doi\":\"10.1021/acsami.4c17038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. Cs<sub>2</sub>NaInCl<sub>6</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy. The fluorescence intensity crossover and outstanding photon output capacity are revealed in comparison with Er<sup>3+</sup>/Yb<sup>3+</sup> codoped and Er<sup>3+</sup> single-doped CNIC phosphors under different laser sources, and the obvious difference in quantum yields (QY) under 980 and 1530 nm excitation provides theoretical possibility for LIRH. More importantly, the obtained LIRH features high stability at temperatures up to 413 K, showing good adaptability in various potential scenarios. Moreover, CNIC:Er, Yb is further combined with polyacrylonitrile (PAN) polymer to form fluorescent fibers with exceptional crystal stability and composite flexibility, thus making the LIRH code a reality based on perovskite composite phosphors. The laser-active invisibility offers an innovative idea for LIRH, further extending the application of LIRH in the field of information encryption, which has promising prospects in information safety, advanced anticounterfeiting, and smart responsive materials.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17038\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Laser-Controlled Information Releasing and Hiding Based on Perovskite Phosphors
Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. Cs2NaInCl6:Er3+, Yb3+ (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy. The fluorescence intensity crossover and outstanding photon output capacity are revealed in comparison with Er3+/Yb3+ codoped and Er3+ single-doped CNIC phosphors under different laser sources, and the obvious difference in quantum yields (QY) under 980 and 1530 nm excitation provides theoretical possibility for LIRH. More importantly, the obtained LIRH features high stability at temperatures up to 413 K, showing good adaptability in various potential scenarios. Moreover, CNIC:Er, Yb is further combined with polyacrylonitrile (PAN) polymer to form fluorescent fibers with exceptional crystal stability and composite flexibility, thus making the LIRH code a reality based on perovskite composite phosphors. The laser-active invisibility offers an innovative idea for LIRH, further extending the application of LIRH in the field of information encryption, which has promising prospects in information safety, advanced anticounterfeiting, and smart responsive materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.