Feng-Teng Gao , Ming Zhang , Yuna Shimadate , Atsushi Kato , Yi-Xian Li , Yue-Mei Jia , Chu-Yi Yu
{"title":"作为α-甘露糖苷酶和α-l-鼠李糖苷酶高选择性强效抑制剂的对映体C-6氟化莽草酸衍生物:设计、合成和结构-活性关系研究","authors":"Feng-Teng Gao , Ming Zhang , Yuna Shimadate , Atsushi Kato , Yi-Xian Li , Yue-Mei Jia , Chu-Yi Yu","doi":"10.1016/j.ejmech.2024.117031","DOIUrl":null,"url":null,"abstract":"<div><div>Six C-6 fluorinated <span>d</span>-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with <span>d</span>-swainsonine (<strong>1</strong>) and <span>l</span>-swainsonine (<strong><em>ent</em>-1</strong>) as contrasts found that the C-6 fluorinated <span>d</span>-swainsonine derivatives with C-8 configurations as <em>R</em> (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as <em>S</em> (β) were powerful and selective α-<span>l</span>-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinated<span>d</span>-swainsonine derivatives <strong>21</strong>, <strong>24</strong> and <strong>25</strong> with highly coincident binding conformations with <span>d</span>-swainsonine (<strong>1</strong>) in their interactions with the active site of α-mannosidase (PDB ID: <span><span>1HWW</span><svg><path></path></svg></span>). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-<span>l</span>-rhamnosidase (PDB ID: <span><span>3W5N</span><svg><path></path></svg></span>) were proved to be vital for potent α-<span>l</span>-rhamnosidase inhibitions of the <span>l</span>-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the “mimic effect” of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-<span>l</span>-rhamnosidase inhibitors.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"282 ","pages":"Article 117031"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study\",\"authors\":\"Feng-Teng Gao , Ming Zhang , Yuna Shimadate , Atsushi Kato , Yi-Xian Li , Yue-Mei Jia , Chu-Yi Yu\",\"doi\":\"10.1016/j.ejmech.2024.117031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Six C-6 fluorinated <span>d</span>-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with <span>d</span>-swainsonine (<strong>1</strong>) and <span>l</span>-swainsonine (<strong><em>ent</em>-1</strong>) as contrasts found that the C-6 fluorinated <span>d</span>-swainsonine derivatives with C-8 configurations as <em>R</em> (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as <em>S</em> (β) were powerful and selective α-<span>l</span>-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinated<span>d</span>-swainsonine derivatives <strong>21</strong>, <strong>24</strong> and <strong>25</strong> with highly coincident binding conformations with <span>d</span>-swainsonine (<strong>1</strong>) in their interactions with the active site of α-mannosidase (PDB ID: <span><span>1HWW</span><svg><path></path></svg></span>). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-<span>l</span>-rhamnosidase (PDB ID: <span><span>3W5N</span><svg><path></path></svg></span>) were proved to be vital for potent α-<span>l</span>-rhamnosidase inhibitions of the <span>l</span>-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the “mimic effect” of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-<span>l</span>-rhamnosidase inhibitors.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"282 \",\"pages\":\"Article 117031\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424009139\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424009139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-l-rhamnosidase (PDB ID: 3W5N) were proved to be vital for potent α-l-rhamnosidase inhibitions of the l-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the “mimic effect” of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-l-rhamnosidase inhibitors.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.