作为治疗 MSI 肿瘤的 WRN 抑制剂的三唑并嘧啶衍生物的设计、合成和结构-活性关系研究

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Qibang Sui, Yuanyang Zhou, Manjia Li, Dan Wang, Rongrong Cui, Xiaoying Cai, Jia Liu, Xiaofeng Wang, Dan Teng, Jingyi Zhou, Hui Hou, Sulin Zhang, Mingyue Zheng
{"title":"作为治疗 MSI 肿瘤的 WRN 抑制剂的三唑并嘧啶衍生物的设计、合成和结构-活性关系研究","authors":"Qibang Sui, Yuanyang Zhou, Manjia Li, Dan Wang, Rongrong Cui, Xiaoying Cai, Jia Liu, Xiaofeng Wang, Dan Teng, Jingyi Zhou, Hui Hou, Sulin Zhang, Mingyue Zheng","doi":"10.1016/j.ejmech.2024.117039","DOIUrl":null,"url":null,"abstract":"Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound <strong>HRO761</strong> is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound <strong>S35</strong>. <strong>S35</strong> exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC<sub>50</sub> = 16.1 nM, fluorometric helicase assay IC<sub>50</sub> = 23.5 nM). Additionally, <strong>S35</strong> exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI<sub>50</sub> = 36.4−306 nM), while the GI<sub>50</sub> values for multiple microsatellite stability (MSS) cell lines were greater than 20000 nM. Furthermore, we observed that compound <strong>S35</strong> induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. <strong>S35</strong> demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"15 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Structure−Activity Relationship Studies of Triazolo-pyrimidine Derivatives as WRN Inhibitors for the Treatment of MSI Tumors\",\"authors\":\"Qibang Sui, Yuanyang Zhou, Manjia Li, Dan Wang, Rongrong Cui, Xiaoying Cai, Jia Liu, Xiaofeng Wang, Dan Teng, Jingyi Zhou, Hui Hou, Sulin Zhang, Mingyue Zheng\",\"doi\":\"10.1016/j.ejmech.2024.117039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound <strong>HRO761</strong> is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound <strong>S35</strong>. <strong>S35</strong> exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC<sub>50</sub> = 16.1 nM, fluorometric helicase assay IC<sub>50</sub> = 23.5 nM). Additionally, <strong>S35</strong> exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI<sub>50</sub> = 36.4−306 nM), while the GI<sub>50</sub> values for multiple microsatellite stability (MSS) cell lines were greater than 20000 nM. Furthermore, we observed that compound <strong>S35</strong> induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. <strong>S35</strong> demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2024.117039\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

维尔纳综合征 RecQ 螺旋酶(WRN)是 RecQ 螺旋酶家族的成员,最近被确定为微卫星不稳定性(MSI)肿瘤的合成致死靶点。三唑并嘧啶化合物 HRO761 是第一个进入临床试验的 WRN 抑制剂,但对这一支架的研究仍然有限。在此,我们设计了一系列衍生物来系统研究三唑并嘧啶支架的结构-活性关系(SAR),最终发现了化合物 S35。S35 具有出色的 WRN 螺旋酶抑制活性(ADP-Glo 激酶测定 IC50 = 16.1 nM,荧光螺旋酶测定 IC50 = 23.5 nM)。此外,S35 还表现出极佳的细胞选择性,对多种 MSI 细胞株具有抗增殖活性(GI50 = 36.4-306 nM),而对多种微卫星稳定性(MSS)细胞株的 GI50 值大于 20000 nM。此外,我们还观察到化合物 S35 在 MSI 细胞中诱导 DNA 损伤并导致 G2/M 细胞周期停滞,而在 MSS 细胞中则不会发生这种情况。S35 表现出良好的口服药物动力学特性,口服给药可在 SW48 异种移植模型中产生剂量依赖性肿瘤生长抑制作用。这些发现为开发用于治疗MSI肿瘤的WRN抑制剂提供了良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design, Synthesis, and Structure−Activity Relationship Studies of Triazolo-pyrimidine Derivatives as WRN Inhibitors for the Treatment of MSI Tumors

Design, Synthesis, and Structure−Activity Relationship Studies of Triazolo-pyrimidine Derivatives as WRN Inhibitors for the Treatment of MSI Tumors
Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound HRO761 is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound S35. S35 exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC50 = 16.1 nM, fluorometric helicase assay IC50 = 23.5 nM). Additionally, S35 exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI50 = 36.4−306 nM), while the GI50 values for multiple microsatellite stability (MSS) cell lines were greater than 20000 nM. Furthermore, we observed that compound S35 induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. S35 demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信