超长寿命准固态锌离子电池的电子-离子双传输通道界面工程学

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dengke Wang , Danyang Zhao , Le Chang , Yi Zhang , Weiyue Wang , Wenming Zhang , Qiancheng Zhu
{"title":"超长寿命准固态锌离子电池的电子-离子双传输通道界面工程学","authors":"Dengke Wang ,&nbsp;Danyang Zhao ,&nbsp;Le Chang ,&nbsp;Yi Zhang ,&nbsp;Weiyue Wang ,&nbsp;Wenming Zhang ,&nbsp;Qiancheng Zhu","doi":"10.1016/j.ensm.2024.103903","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn<sup>2+</sup>. Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn<sup>2+</sup> and weaken the strong bonding of Zn<sup>2+</sup> and H<sub>2</sub>O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between <img>SO<sub>3</sub><sup>–</sup> groups and Zn<sup>2+</sup>. While another PEDOT chains can provide electron conducting channels through the conjugated π-<img>π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm<sup>–1</sup>. The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup> (&gt;9 months), and cycling life of MnO<sub>2</sub>-Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103903"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries\",\"authors\":\"Dengke Wang ,&nbsp;Danyang Zhao ,&nbsp;Le Chang ,&nbsp;Yi Zhang ,&nbsp;Weiyue Wang ,&nbsp;Wenming Zhang ,&nbsp;Qiancheng Zhu\",\"doi\":\"10.1016/j.ensm.2024.103903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn<sup>2+</sup>. Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn<sup>2+</sup> and weaken the strong bonding of Zn<sup>2+</sup> and H<sub>2</sub>O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between <img>SO<sub>3</sub><sup>–</sup> groups and Zn<sup>2+</sup>. While another PEDOT chains can provide electron conducting channels through the conjugated π-<img>π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm<sup>–1</sup>. The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup> (&gt;9 months), and cycling life of MnO<sub>2</sub>-Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"74 \",\"pages\":\"Article 103903\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724007293\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007293","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶电解质已成为延长锌离子水电池(AZIB)寿命的有效策略。然而,由于活性水的残留和 Zn2+ 的混乱迁移,枝晶和副反应仍然不可避免。在此,通过界面电子-离子双传输通道(EIDC)和中间海藻酸钠(SA)凝胶的协同效应,实现了超稳定的锌阳极。具体来说,海藻酸钠凝胶可以调整 Zn2+ 的溶解结构,削弱 Zn2+ 与 H2O 分子的强结合。在 SA 水凝胶表面设计了 EIDC 聚合物层(PEDOT:PSS),其中 PSS 链可通过 -SO3- 基团与 Zn2+ 之间的静电作用提供均匀的离子传输通道。而另一种 PEDOT 链则可通过共轭 π-π 键提供电子传导通道,加速电荷交换。得益于 EIDC 聚合物层和 SA 凝胶的协同作用,制备的 SA/EIDC 凝胶电解质达到了 41 mS cm-1 的高离子电导率。在 1 mA cm-2 和 1 mAh cm-2 条件下,Zn//Zn 对称电池具有 6750 小时的超长寿命(9 个月),MnO2-Zn 全电池的循环寿命超过 4000 次。这项工作为设计超长寿命 ZIB 的水凝胶电解质提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries

Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries

Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries
Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn2+. Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn2+ and weaken the strong bonding of Zn2+ and H2O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between SO3 groups and Zn2+. While another PEDOT chains can provide electron conducting channels through the conjugated π-π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm–1. The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm–2 and 1 mAh cm–2 (>9 months), and cycling life of MnO2-Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信