{"title":"可回收、高强度、电气机械自修复可穿戴离子水凝胶传感器","authors":"Jincheng Zou, Zhenxuan Yang, Junyi Liang, Yifan Xie, Minmin Fan, Xi Zhang","doi":"10.1016/j.polymer.2024.127826","DOIUrl":null,"url":null,"abstract":"Ionic hydrogels are ideal materials for wearable sensors on the human body, typically requiring excellent mechanical properties, adhesion, self-healing, and sensing capabilities. However, traditional methods to enhance the mechanical properties of ionic hydrogels often compromise their self-healing and sensing performance. Considering this, in this study, we developed a high-strength, recyclable hydrogel with a wide monitoring range, formulated from acrylic acid, hexahydrate aluminum chloride, and polyquaternium-10. By employing a simple freeze-thaw process, the tensile strength of the hydrogel was significantly increased from 0.3 MPa to 1.89 MPa, and the elongation at break was enhanced from 900% to 1400%. Additionally, the hydrogel demonstrates exceptional adhesion to various substrates and possesses mechanical-electrical dual self-healing properties. The hydrogel's broad strain detection range (1%-400%) further underscores its potential for high-performance sensing applications. Furthermore, the reconfigurable, high-density supramolecular network of hydrogels enables the reprocessing of discarded material into value-added products through a straightforward water swelling treatment. We believe that our approach offers a straightforward and efficient strategy for enhancing the mechanical properties of acrylic acid-based hydrogel sensors and, more significantly, contributes to the sustainable utilization of hydrogel materials.","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable, high strength and electrical-mechanical self-healing wearable ionic hydrogel sensor\",\"authors\":\"Jincheng Zou, Zhenxuan Yang, Junyi Liang, Yifan Xie, Minmin Fan, Xi Zhang\",\"doi\":\"10.1016/j.polymer.2024.127826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic hydrogels are ideal materials for wearable sensors on the human body, typically requiring excellent mechanical properties, adhesion, self-healing, and sensing capabilities. However, traditional methods to enhance the mechanical properties of ionic hydrogels often compromise their self-healing and sensing performance. Considering this, in this study, we developed a high-strength, recyclable hydrogel with a wide monitoring range, formulated from acrylic acid, hexahydrate aluminum chloride, and polyquaternium-10. By employing a simple freeze-thaw process, the tensile strength of the hydrogel was significantly increased from 0.3 MPa to 1.89 MPa, and the elongation at break was enhanced from 900% to 1400%. Additionally, the hydrogel demonstrates exceptional adhesion to various substrates and possesses mechanical-electrical dual self-healing properties. The hydrogel's broad strain detection range (1%-400%) further underscores its potential for high-performance sensing applications. Furthermore, the reconfigurable, high-density supramolecular network of hydrogels enables the reprocessing of discarded material into value-added products through a straightforward water swelling treatment. We believe that our approach offers a straightforward and efficient strategy for enhancing the mechanical properties of acrylic acid-based hydrogel sensors and, more significantly, contributes to the sustainable utilization of hydrogel materials.\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.polymer.2024.127826\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127826","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recyclable, high strength and electrical-mechanical self-healing wearable ionic hydrogel sensor
Ionic hydrogels are ideal materials for wearable sensors on the human body, typically requiring excellent mechanical properties, adhesion, self-healing, and sensing capabilities. However, traditional methods to enhance the mechanical properties of ionic hydrogels often compromise their self-healing and sensing performance. Considering this, in this study, we developed a high-strength, recyclable hydrogel with a wide monitoring range, formulated from acrylic acid, hexahydrate aluminum chloride, and polyquaternium-10. By employing a simple freeze-thaw process, the tensile strength of the hydrogel was significantly increased from 0.3 MPa to 1.89 MPa, and the elongation at break was enhanced from 900% to 1400%. Additionally, the hydrogel demonstrates exceptional adhesion to various substrates and possesses mechanical-electrical dual self-healing properties. The hydrogel's broad strain detection range (1%-400%) further underscores its potential for high-performance sensing applications. Furthermore, the reconfigurable, high-density supramolecular network of hydrogels enables the reprocessing of discarded material into value-added products through a straightforward water swelling treatment. We believe that our approach offers a straightforward and efficient strategy for enhancing the mechanical properties of acrylic acid-based hydrogel sensors and, more significantly, contributes to the sustainable utilization of hydrogel materials.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.