Mahmoud Al-Salihi, Salah Eddine Ghellab, Yanpin Li, Chenggui Luo, Um-e Kalsoom, Liwei Liu
{"title":"大脑的有效快速荧光寿命成像:基于门宽度采集的上转换光致发光寿命新方法","authors":"Mahmoud Al-Salihi, Salah Eddine Ghellab, Yanpin Li, Chenggui Luo, Um-e Kalsoom, Liwei Liu","doi":"10.1021/acs.nanolett.4c03516","DOIUrl":null,"url":null,"abstract":"The rapid lifetime imaging of upconversion photoluminescence is becoming increasingly popular in biosensing, anticounterfeiting, optical thermometry, and multiplex imaging. However, existing Rapid Lifetime Determination (RLD) techniques are limited in their ability to integrate contiguous, overlapping, and discrete windows into a single measurement, hindering accurate fluorescence lifetime retrieval. This study introduces a new data acquisition method using three adjustable gates in a single measurement to enhance resolution. We apply this method in rapid upconversion fluorescence lifetime imaging to visualize capillary networks and map pH levels based on intensity and lifetime differences in mouse brain vasculature. By enhancing brightness using NaYbF4@NaYF4,Er,Tm@NaYF4 nanoparticles, we achieve effective brain imaging. Monte Carlo simulations demonstrate a relative standard deviation of less than 0.4% for fluorescence durations spanning from 1 to 20 ns. This method provides a fast, high-contrast solution for multiplex brain imaging, addressing the limitations of slow data collection and poor accuracy in existing RLD techniques.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Rapid Fluorescence Lifetime Imaging of the Brain: A Novel Approach Using Upconversion Photoluminescence Lifetime Based on Gate-Width Acquisition\",\"authors\":\"Mahmoud Al-Salihi, Salah Eddine Ghellab, Yanpin Li, Chenggui Luo, Um-e Kalsoom, Liwei Liu\",\"doi\":\"10.1021/acs.nanolett.4c03516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid lifetime imaging of upconversion photoluminescence is becoming increasingly popular in biosensing, anticounterfeiting, optical thermometry, and multiplex imaging. However, existing Rapid Lifetime Determination (RLD) techniques are limited in their ability to integrate contiguous, overlapping, and discrete windows into a single measurement, hindering accurate fluorescence lifetime retrieval. This study introduces a new data acquisition method using three adjustable gates in a single measurement to enhance resolution. We apply this method in rapid upconversion fluorescence lifetime imaging to visualize capillary networks and map pH levels based on intensity and lifetime differences in mouse brain vasculature. By enhancing brightness using NaYbF4@NaYF4,Er,Tm@NaYF4 nanoparticles, we achieve effective brain imaging. Monte Carlo simulations demonstrate a relative standard deviation of less than 0.4% for fluorescence durations spanning from 1 to 20 ns. This method provides a fast, high-contrast solution for multiplex brain imaging, addressing the limitations of slow data collection and poor accuracy in existing RLD techniques.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03516\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03516","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effective Rapid Fluorescence Lifetime Imaging of the Brain: A Novel Approach Using Upconversion Photoluminescence Lifetime Based on Gate-Width Acquisition
The rapid lifetime imaging of upconversion photoluminescence is becoming increasingly popular in biosensing, anticounterfeiting, optical thermometry, and multiplex imaging. However, existing Rapid Lifetime Determination (RLD) techniques are limited in their ability to integrate contiguous, overlapping, and discrete windows into a single measurement, hindering accurate fluorescence lifetime retrieval. This study introduces a new data acquisition method using three adjustable gates in a single measurement to enhance resolution. We apply this method in rapid upconversion fluorescence lifetime imaging to visualize capillary networks and map pH levels based on intensity and lifetime differences in mouse brain vasculature. By enhancing brightness using NaYbF4@NaYF4,Er,Tm@NaYF4 nanoparticles, we achieve effective brain imaging. Monte Carlo simulations demonstrate a relative standard deviation of less than 0.4% for fluorescence durations spanning from 1 to 20 ns. This method provides a fast, high-contrast solution for multiplex brain imaging, addressing the limitations of slow data collection and poor accuracy in existing RLD techniques.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.