铁诱导的脂质氧化改变了有利于渗透稳定的膜机理

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sara Lotfipour Nasudivar, Lohans Pedrera, Ana J. García-Sáez
{"title":"铁诱导的脂质氧化改变了有利于渗透稳定的膜机理","authors":"Sara Lotfipour Nasudivar, Lohans Pedrera, Ana J. García-Sáez","doi":"10.1021/acs.langmuir.4c03294","DOIUrl":null,"url":null,"abstract":"Ferroptosis is a form of regulated necrosis characterized by the iron-dependent accumulation of lipid peroxides in cell membranes. However, how lipid oxidation via iron-mediated Fenton reactions affects the biophysical properties of cellular membranes and how these changes contribute to the opening of plasma membrane pores are major questions in the field. Here, we characterized the dynamics of membrane alterations during lipid oxidation induced onsite by Fenton reactions in chemically defined <i>in vitro</i> model membrane systems. We find that lipid vesicle permeabilization kinetically correlates with the appearance of malondialdehyde (MDA), a product of lipid oxidation. Iron-induced lipid oxidation also alters the lateral organization of supported lipid bilayers (SLBs) with lipid phase coexistence in a time-dependent manner, reducing the lipid phase mismatch and the circularity of liquid ordered domains, which indicates a decrease in line tension at the phase boundaries. Further analysis of oxidized SLBs by force spectroscopy reveals a significant decrease in the average membrane breakthrough force upon oxidation, resulting from changes in lipid bilayer organization that make it more susceptible to permeabilization. Our findings suggest that lipid oxidation via iron-mediated Fenton-like reactions induces strong changes in membrane lipid interactions and mechanical properties leading to reduced line tension in the permeabilized state of the bilayer, which promotes membrane pore formation.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron-Induced Lipid Oxidation Alters Membrane Mechanics Favoring Permeabilization\",\"authors\":\"Sara Lotfipour Nasudivar, Lohans Pedrera, Ana J. García-Sáez\",\"doi\":\"10.1021/acs.langmuir.4c03294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroptosis is a form of regulated necrosis characterized by the iron-dependent accumulation of lipid peroxides in cell membranes. However, how lipid oxidation via iron-mediated Fenton reactions affects the biophysical properties of cellular membranes and how these changes contribute to the opening of plasma membrane pores are major questions in the field. Here, we characterized the dynamics of membrane alterations during lipid oxidation induced onsite by Fenton reactions in chemically defined <i>in vitro</i> model membrane systems. We find that lipid vesicle permeabilization kinetically correlates with the appearance of malondialdehyde (MDA), a product of lipid oxidation. Iron-induced lipid oxidation also alters the lateral organization of supported lipid bilayers (SLBs) with lipid phase coexistence in a time-dependent manner, reducing the lipid phase mismatch and the circularity of liquid ordered domains, which indicates a decrease in line tension at the phase boundaries. Further analysis of oxidized SLBs by force spectroscopy reveals a significant decrease in the average membrane breakthrough force upon oxidation, resulting from changes in lipid bilayer organization that make it more susceptible to permeabilization. Our findings suggest that lipid oxidation via iron-mediated Fenton-like reactions induces strong changes in membrane lipid interactions and mechanical properties leading to reduced line tension in the permeabilized state of the bilayer, which promotes membrane pore formation.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03294\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03294","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁中毒是一种调节性坏死,其特点是细胞膜中脂质过氧化物的铁依赖性积累。然而,通过铁介导的芬顿反应进行的脂质氧化如何影响细胞膜的生物物理特性,以及这些变化如何促进质膜孔的打开,是该领域的主要问题。在这里,我们描述了在化学定义的体外模型膜系统中由芬顿反应现场诱导的脂质氧化过程中膜的动态变化。我们发现,脂质囊泡的通透性与脂质氧化的产物丙二醛(MDA)的出现在动力学上相关。铁诱导的脂质氧化还以时间依赖的方式改变了脂相共存的支撑脂质双分子层(SLBs)的横向组织,减少了脂相错配和液态有序畴的圆度,这表明相边界的线张力降低了。通过力谱仪对氧化的 SLB 进行进一步分析发现,氧化时膜的平均突破力显著下降,这是由于脂质双分子层组织发生了变化,使其更容易渗透。我们的研究结果表明,通过铁介导的芬顿样反应进行的脂质氧化会引起膜脂相互作用和机械特性的强烈变化,导致双分子层渗透状态下的线张力降低,从而促进膜孔的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iron-Induced Lipid Oxidation Alters Membrane Mechanics Favoring Permeabilization

Iron-Induced Lipid Oxidation Alters Membrane Mechanics Favoring Permeabilization
Ferroptosis is a form of regulated necrosis characterized by the iron-dependent accumulation of lipid peroxides in cell membranes. However, how lipid oxidation via iron-mediated Fenton reactions affects the biophysical properties of cellular membranes and how these changes contribute to the opening of plasma membrane pores are major questions in the field. Here, we characterized the dynamics of membrane alterations during lipid oxidation induced onsite by Fenton reactions in chemically defined in vitro model membrane systems. We find that lipid vesicle permeabilization kinetically correlates with the appearance of malondialdehyde (MDA), a product of lipid oxidation. Iron-induced lipid oxidation also alters the lateral organization of supported lipid bilayers (SLBs) with lipid phase coexistence in a time-dependent manner, reducing the lipid phase mismatch and the circularity of liquid ordered domains, which indicates a decrease in line tension at the phase boundaries. Further analysis of oxidized SLBs by force spectroscopy reveals a significant decrease in the average membrane breakthrough force upon oxidation, resulting from changes in lipid bilayer organization that make it more susceptible to permeabilization. Our findings suggest that lipid oxidation via iron-mediated Fenton-like reactions induces strong changes in membrane lipid interactions and mechanical properties leading to reduced line tension in the permeabilized state of the bilayer, which promotes membrane pore formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信