Yuntao Yang, Himansu Kumar, Yuhan Xie, Zhao Li, Rongbin Li, Wenbo Chen, Chiamaka S Diala, Meer A Ali, Yi Xu, Albon Wu, Sayed-Rzgar Hosseini, Erfei Bi, Hongyu Zhao, Pora Kim, W Jim Zheng
{"title":"ASpdb:根据实验和人工智能预测结构建立的人类蛋白质同工酶综合知识库","authors":"Yuntao Yang, Himansu Kumar, Yuhan Xie, Zhao Li, Rongbin Li, Wenbo Chen, Chiamaka S Diala, Meer A Ali, Yi Xu, Albon Wu, Sayed-Rzgar Hosseini, Erfei Bi, Hongyu Zhao, Pora Kim, W Jim Zheng","doi":"10.1093/nar/gkae1018","DOIUrl":null,"url":null,"abstract":"Alternative splicing is a crucial cellular process in eukaryotes, enabling the generation of multiple protein isoforms with diverse functions from a single gene. To better understand the impact of alternative splicing on protein structures, protein–protein interaction and human diseases, we developed ASpdb (https://biodataai.uth.edu/ASpdb/), a comprehensive database integrating experimentally determined structures and AlphaFold 2-predicted models for human protein isoforms. ASpdb includes over 3400 canonical isoforms, each represented by both experimentally resolved and predicted structures, and >7200 alternative isoforms with AlphaFold 2 predictions. In addition to detailed splicing events, 3D structures, sequence variations and functional annotations, ASpdb uniquely offers comparative analyses and visualization of structural alterations among isoforms. This resource is invaluable for advancing research in alternative splicing, structural biology and disease mechanisms.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"11 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASpdb: an integrative knowledgebase of human protein isoforms from experimental and AI-predicted structures\",\"authors\":\"Yuntao Yang, Himansu Kumar, Yuhan Xie, Zhao Li, Rongbin Li, Wenbo Chen, Chiamaka S Diala, Meer A Ali, Yi Xu, Albon Wu, Sayed-Rzgar Hosseini, Erfei Bi, Hongyu Zhao, Pora Kim, W Jim Zheng\",\"doi\":\"10.1093/nar/gkae1018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alternative splicing is a crucial cellular process in eukaryotes, enabling the generation of multiple protein isoforms with diverse functions from a single gene. To better understand the impact of alternative splicing on protein structures, protein–protein interaction and human diseases, we developed ASpdb (https://biodataai.uth.edu/ASpdb/), a comprehensive database integrating experimentally determined structures and AlphaFold 2-predicted models for human protein isoforms. ASpdb includes over 3400 canonical isoforms, each represented by both experimentally resolved and predicted structures, and >7200 alternative isoforms with AlphaFold 2 predictions. In addition to detailed splicing events, 3D structures, sequence variations and functional annotations, ASpdb uniquely offers comparative analyses and visualization of structural alterations among isoforms. This resource is invaluable for advancing research in alternative splicing, structural biology and disease mechanisms.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1018\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ASpdb: an integrative knowledgebase of human protein isoforms from experimental and AI-predicted structures
Alternative splicing is a crucial cellular process in eukaryotes, enabling the generation of multiple protein isoforms with diverse functions from a single gene. To better understand the impact of alternative splicing on protein structures, protein–protein interaction and human diseases, we developed ASpdb (https://biodataai.uth.edu/ASpdb/), a comprehensive database integrating experimentally determined structures and AlphaFold 2-predicted models for human protein isoforms. ASpdb includes over 3400 canonical isoforms, each represented by both experimentally resolved and predicted structures, and >7200 alternative isoforms with AlphaFold 2 predictions. In addition to detailed splicing events, 3D structures, sequence variations and functional annotations, ASpdb uniquely offers comparative analyses and visualization of structural alterations among isoforms. This resource is invaluable for advancing research in alternative splicing, structural biology and disease mechanisms.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.