函数数据分析中的经验似然法

IF 7.4 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hsin-wen Chang, Ian W. McKeague
{"title":"函数数据分析中的经验似然法","authors":"Hsin-wen Chang, Ian W. McKeague","doi":"10.1146/annurev-statistics-112723-034225","DOIUrl":null,"url":null,"abstract":"Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"60 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Likelihood in Functional Data Analysis\",\"authors\":\"Hsin-wen Chang, Ian W. McKeague\",\"doi\":\"10.1146/annurev-statistics-112723-034225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034225\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034225","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

功能数据分析(FDA)研究包括无限维函数或对象的数据,从每个研究单元概括传统的单变量或多变量观察结果。在没有参数假设的推论方法中,经验似然法(EL)提供了一种原则性方法,它通过非参数似然法扩展了基于参数似然比的推论框架。由于 EL 具有许多有利特性,包括自归一化和置信区的数据驱动形状,因此在 FDA 中的应用越来越多。本文综述了 EL 在 FDA 中的应用,从有限维特征开始,然后涵盖无限维特征。我们对比了 FDA 中的平滑框架和非平滑框架,并展示了 EL 如何融入这两种框架。文章最后讨论了一些未来的研究方向,包括将 EL 应用于保形推理的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Likelihood in Functional Data Analysis
Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Statistics and Its Application
Annual Review of Statistics and Its Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
13.40
自引率
1.30%
发文量
29
期刊介绍: The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信