Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann
{"title":"纳秒瞬态验证避雷器模型以预测电磁脉冲响应","authors":"Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann","doi":"10.1109/TEMC.2024.3486980","DOIUrl":null,"url":null,"abstract":"The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 1","pages":"286-294"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond Transient Validation of Surge Arrester Models to Predict Electromagnetic Pulse Response\",\"authors\":\"Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann\",\"doi\":\"10.1109/TEMC.2024.3486980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.\",\"PeriodicalId\":55012,\"journal\":{\"name\":\"IEEE Transactions on Electromagnetic Compatibility\",\"volume\":\"67 1\",\"pages\":\"286-294\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electromagnetic Compatibility\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750879/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750879/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nanosecond Transient Validation of Surge Arrester Models to Predict Electromagnetic Pulse Response
The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.
期刊介绍:
IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.