纳秒瞬态验证避雷器模型以预测电磁脉冲响应

IF 2 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann
{"title":"纳秒瞬态验证避雷器模型以预测电磁脉冲响应","authors":"Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann","doi":"10.1109/TEMC.2024.3486980","DOIUrl":null,"url":null,"abstract":"The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 1","pages":"286-294"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond Transient Validation of Surge Arrester Models to Predict Electromagnetic Pulse Response\",\"authors\":\"Tyler C. Bowman;Thomas Kmieciak;Laura B. Biedermann\",\"doi\":\"10.1109/TEMC.2024.3486980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.\",\"PeriodicalId\":55012,\"journal\":{\"name\":\"IEEE Transactions on Electromagnetic Compatibility\",\"volume\":\"67 1\",\"pages\":\"286-294\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electromagnetic Compatibility\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750879/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750879/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanosecond Transient Validation of Surge Arrester Models to Predict Electromagnetic Pulse Response
The impact of high-altitude electromagnetic pulse events on the electric grid is not fully understood, and validated modeling of mitigations, such as lightning surge arresters (LSAs) is necessary to predict the propagation of very fast transients on the grid. Experimental validation of high frequency models for surge arresters is an active area of research. This article serves to experimentally validate a previously defined ZnO LSA model using four metal-oxide varistor pucks and nanosecond scale pulses to measure voltage and current responses. The SPICE circuit models of the pucks showed good predictability when compared to the measured arrester response when accounting for a testbed inductance of approximately 100 nH. Additionally, the comparatively high capacitance of low-profile arresters show a favorable response to high-speed transients that indicates the potential for effective electromagnetic pulse mitigation with future materials design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
19.00%
发文量
235
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信