出生前后的免疫挑战影响断奶猪的肌肉生长和新陈代谢

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Thomas W Dobbins, Luke K Fuerniss, Manuel S Hernandez, Bradley J Johnson, Amy L Petry, Paul R Broadway, Nicole C Burdick-Sanchez, Jerrad F Legako
{"title":"出生前后的免疫挑战影响断奶猪的肌肉生长和新陈代谢","authors":"Thomas W Dobbins, Luke K Fuerniss, Manuel S Hernandez, Bradley J Johnson, Amy L Petry, Paul R Broadway, Nicole C Burdick-Sanchez, Jerrad F Legako","doi":"10.1093/jas/skae350","DOIUrl":null,"url":null,"abstract":"The in-utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and post-weaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n= 7) at a dose of 2.5 μg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 μg/kg 7 d post weaning. Twenty-four h after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P ≥ 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P < 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in-utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pre- and postnatal immune challenge influences muscle growth and metabolism in weaned pigs\",\"authors\":\"Thomas W Dobbins, Luke K Fuerniss, Manuel S Hernandez, Bradley J Johnson, Amy L Petry, Paul R Broadway, Nicole C Burdick-Sanchez, Jerrad F Legako\",\"doi\":\"10.1093/jas/skae350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The in-utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and post-weaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n= 7) at a dose of 2.5 μg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 μg/kg 7 d post weaning. Twenty-four h after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P ≥ 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P < 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in-utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.\",\"PeriodicalId\":14895,\"journal\":{\"name\":\"Journal of animal science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of animal science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jas/skae350\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skae350","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

宫内环境对胎儿和出生后的生长发育至关重要。本研究旨在确定在妊娠中后期和断奶后对妊娠母猪施用急性低剂量脂多糖(LPS)是否会改变后代背阔肌(LD)的代谢组谱和肌肉超微结构。妊娠母猪在妊娠 78 ± 1.8 天时被随机分配接受剂量为 2.5 μg/kg 的 LPS(LPS;n= 7)或生理盐水(CON;n = 7)。在断奶时(21 ± 1.3 d),从每种处理中挑选出接受二次 LPS 的小公鸡(CON n = 17;LPS n = 17)。断奶后 7 d,对小白鼠进行二次 LPS 挑战,剂量为 10 μg/kg。在产后注射 LPS 24 小时后,对小白鼠(31 ± 1.3 d)实施安乐死,并取出每个 LD。左侧 LD 用于形态测量。右侧 LD 内侧部分的两个样本被保留下来,用于免疫组化测量和代谢组学分析。使用 MS-DIAL 对质谱数据进行解卷、排列和注释。使用 MetaboAnalyst 进行单变量和多变量分析。进行通路分析并与智人通路库进行比较。形态计量和免疫组化测量使用 SAS 9.4 版的 MIXED 程序进行分析。所有分析的显著性以P≤0.05为标准,倾向性以P≤0.10为标准。与 CON 相比,LPS 后代 I 型和 IIB/X 型肌球蛋白重链(MHC)纤维的平均直径增大(P ≤ 0.048)。LPS 后代 MHC IIB/X 纤维的平均横截面积增加(P = 0.030),MHC I 纤维的平均横截面积趋于增加(P = 0.080)。处理组间总核或 MYF5、PAX7 或 MYF5 和 PAX7 阳性核无差异(P ≥ 0.186)。代谢组学分析确定了 14 个代谢物在治疗组之间的 LD 中有差异表达(P < 0.05)。在 LD 中,有 10 种代谢物在不同治疗组之间存在差异(P ≤ 0.096)。因此,本研究表明,对妊娠母猪使用 LPS 进行产前免疫刺激以及随后的产后 LPS 挑战会改变断奶猪 LD 的代谢组学特征和肌肉超微结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pre- and postnatal immune challenge influences muscle growth and metabolism in weaned pigs
The in-utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and post-weaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n= 7) at a dose of 2.5 μg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 μg/kg 7 d post weaning. Twenty-four h after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P ≥ 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P < 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in-utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信