Criseyda Martinez, Yan Xiong, Alison Bartkowski, Ibuki Harada, Xiaoxiao Ren, Jessica Byerly, Elisa Port, Jian Jin, Hanna Irie
{"title":"一种 PROTAC 降解剂可抑制 PTK6 的致癌功能,诱导乳腺癌细胞凋亡","authors":"Criseyda Martinez, Yan Xiong, Alison Bartkowski, Ibuki Harada, Xiaoxiao Ren, Jessica Byerly, Elisa Port, Jian Jin, Hanna Irie","doi":"10.1016/j.chembiol.2024.10.008","DOIUrl":null,"url":null,"abstract":"Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6’s oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"13 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PROTAC degrader suppresses oncogenic functions of PTK6 inducing apoptosis of breast cancer cells\",\"authors\":\"Criseyda Martinez, Yan Xiong, Alison Bartkowski, Ibuki Harada, Xiaoxiao Ren, Jessica Byerly, Elisa Port, Jian Jin, Hanna Irie\",\"doi\":\"10.1016/j.chembiol.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6’s oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chembiol.2024.10.008\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2024.10.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A PROTAC degrader suppresses oncogenic functions of PTK6 inducing apoptosis of breast cancer cells
Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy. PTK6 kinase inhibitor treatment phenocopies some, but not all effects of PTK6 downregulation. PTK6 downregulation inhibits growth of breast cancer cells, but treatment with PTK6 kinase inhibitor does not. To chemically downregulate PTK6, we designed a PROTAC, MS105, which potently and specifically degrades PTK6. Treatment with MS105, but not PTK6 kinase inhibitor, inhibits growth and induces apoptosis of breast cancer cells, phenocopying the effects of PTK6 (short hairpin RNA) shRNA/CRISPR. In contrast, both MS105 and PTK6 kinase inhibitor effectively inhibit breast cancer cell migration, supporting the differing kinase dependencies of PTK6’s oncogenic functions. Our studies support PTK6 degraders as a preferred approach to targeting PTK6 in cancer.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.