利用基于图像的检测数据改进地震损坏的非加固砌体建筑的响应预测

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Mathias Haindl, Ian F. C. Smith, Katrin Beyer
{"title":"利用基于图像的检测数据改进地震损坏的非加固砌体建筑的响应预测","authors":"Mathias Haindl,&nbsp;Ian F. C. Smith,&nbsp;Katrin Beyer","doi":"10.1007/s10518-024-02023-7","DOIUrl":null,"url":null,"abstract":"<div><p>Explicit representation of uncertainties is essential to improve the reliability of seismic assessments of earthquake-damaged buildings, particularly when dealing with unreinforced masonry buildings. Modern inspection techniques use images for detecting and quantifying the damage to a structure. Based on the principle of falsification, this paper evaluates how the use of information of damage that is obtained from images taken on earthquake-damaged buildings reduces the uncertainty when predicting the seismic response under a future earthquake. New model falsification criteria use information on the residual state of a building, such as shear cracks, residual roof displacements, and observation of out-of-plane failure. To demonstrate the effectiveness of these criteria in reducing the uncertainty in response predictions, results from a four-story unreinforced masonry building stiffened with reinforced concrete walls, which was experimentally tested under a sequence of ground motions, are assessed. Three commonly used modeling approaches (single degree of freedom (DOF) systems, multi DOF systems with four DOFs, and equivalent frame models) are used, where uncertainties in model parameters and model bias are included and propagated through the analysis. Out of the models used, and in the absence of any additional source of information, the proposed falsification criteria are most effective in connection with the equivalent frame model because this model can simulate the response at the element-level, while the simpler models can only represent the global response or the response at the storey-level. The results show that when using only the information on the presence of shear cracks, which might be the first and only source of information after an earthquake, the effectiveness of model falsification is increased, thus reducing the uncertainty in model parameter values and seismic response predictions through the use of image-based inspection.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 14","pages":"7117 - 7148"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02023-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Using image-based inspection data to improve response predictions of earthquake-damaged unreinforced masonry buildings\",\"authors\":\"Mathias Haindl,&nbsp;Ian F. C. Smith,&nbsp;Katrin Beyer\",\"doi\":\"10.1007/s10518-024-02023-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Explicit representation of uncertainties is essential to improve the reliability of seismic assessments of earthquake-damaged buildings, particularly when dealing with unreinforced masonry buildings. Modern inspection techniques use images for detecting and quantifying the damage to a structure. Based on the principle of falsification, this paper evaluates how the use of information of damage that is obtained from images taken on earthquake-damaged buildings reduces the uncertainty when predicting the seismic response under a future earthquake. New model falsification criteria use information on the residual state of a building, such as shear cracks, residual roof displacements, and observation of out-of-plane failure. To demonstrate the effectiveness of these criteria in reducing the uncertainty in response predictions, results from a four-story unreinforced masonry building stiffened with reinforced concrete walls, which was experimentally tested under a sequence of ground motions, are assessed. Three commonly used modeling approaches (single degree of freedom (DOF) systems, multi DOF systems with four DOFs, and equivalent frame models) are used, where uncertainties in model parameters and model bias are included and propagated through the analysis. Out of the models used, and in the absence of any additional source of information, the proposed falsification criteria are most effective in connection with the equivalent frame model because this model can simulate the response at the element-level, while the simpler models can only represent the global response or the response at the storey-level. The results show that when using only the information on the presence of shear cracks, which might be the first and only source of information after an earthquake, the effectiveness of model falsification is increased, thus reducing the uncertainty in model parameter values and seismic response predictions through the use of image-based inspection.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 14\",\"pages\":\"7117 - 7148\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-02023-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02023-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02023-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

明确表示不确定性对于提高地震受损建筑抗震评估的可靠性至关重要,尤其是在处理非钢筋砌体建筑时。现代检测技术使用图像来检测和量化结构的损坏情况。根据伪造原理,本文评估了如何利用从地震受损建筑物拍摄的图像中获得的损坏信息来减少预测未来地震时地震响应的不确定性。新的模型证伪标准使用了建筑物的残余状态信息,如剪切裂缝、残余屋顶位移和平面外破坏观测。为了证明这些标准在减少响应预测不确定性方面的有效性,我们评估了一栋四层楼高的钢筋混凝土加劲砌体建筑在一系列地面运动下的实验测试结果。使用了三种常用的建模方法(单自由度 (DOF) 系统、具有四个 DOF 的多 DOF 系统和等效框架模型),其中包括模型参数的不确定性和模型偏差,并通过分析进行传播。在所使用的各种模型中,在没有任何额外信息源的情况下,所提出的验证标准对等效框架模型最为有效,因为该模型可以模拟元件级响应,而较简单的模型只能表示全局响应或层级响应。结果表明,当仅使用剪切裂缝存在的信息时(这可能是地震后第一个也是唯一的信息来源),模型证伪的有效性会提高,从而通过使用基于图像的检查减少模型参数值和地震响应预测的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using image-based inspection data to improve response predictions of earthquake-damaged unreinforced masonry buildings

Explicit representation of uncertainties is essential to improve the reliability of seismic assessments of earthquake-damaged buildings, particularly when dealing with unreinforced masonry buildings. Modern inspection techniques use images for detecting and quantifying the damage to a structure. Based on the principle of falsification, this paper evaluates how the use of information of damage that is obtained from images taken on earthquake-damaged buildings reduces the uncertainty when predicting the seismic response under a future earthquake. New model falsification criteria use information on the residual state of a building, such as shear cracks, residual roof displacements, and observation of out-of-plane failure. To demonstrate the effectiveness of these criteria in reducing the uncertainty in response predictions, results from a four-story unreinforced masonry building stiffened with reinforced concrete walls, which was experimentally tested under a sequence of ground motions, are assessed. Three commonly used modeling approaches (single degree of freedom (DOF) systems, multi DOF systems with four DOFs, and equivalent frame models) are used, where uncertainties in model parameters and model bias are included and propagated through the analysis. Out of the models used, and in the absence of any additional source of information, the proposed falsification criteria are most effective in connection with the equivalent frame model because this model can simulate the response at the element-level, while the simpler models can only represent the global response or the response at the storey-level. The results show that when using only the information on the presence of shear cracks, which might be the first and only source of information after an earthquake, the effectiveness of model falsification is increased, thus reducing the uncertainty in model parameter values and seismic response predictions through the use of image-based inspection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信