关于(m, n)-时钟问题和矩阵的(ell _{\infty }-\ell _1\)规范

IF 0.8 Q2 MATHEMATICS
Chandrodoy Chattopadhyay, Kalidas Mandal, Debmalya Sain
{"title":"关于(m, n)-时钟问题和矩阵的(ell _{\\infty }-\\ell _1\\)规范","authors":"Chandrodoy Chattopadhyay,&nbsp;Kalidas Mandal,&nbsp;Debmalya Sain","doi":"10.1007/s43036-024-00401-1","DOIUrl":null,"url":null,"abstract":"<div><p>We characterize the norm attainment set of a linear operator from <span>\\( \\ell _{\\infty }^{2}({\\mathbb {C}}) \\)</span> to <span>\\( \\ell _{1}^{2}({\\mathbb {C}}), \\)</span> with the help of a physical model involving two clocks entangled in a specific way. More generally, we introduce the (<i>m</i>, <i>n</i>)-clock Problem and establish its equivalence with computing the <span>\\(\\ell _{\\infty }-\\ell _1\\)</span> norm of an <span>\\( m \\times n \\)</span> matrix. We further give an explicit description of the smooth and the non-smooth points in <span>\\({\\mathbb {L}}\\big (\\ell _\\infty ^2({\\mathbb {C}}),\\ell _1^2({\\mathbb {C}})\\big ).\\)</span></p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the (m, n)-clock problem and the \\\\(\\\\ell _{\\\\infty }-\\\\ell _1\\\\) norm of a matrix\",\"authors\":\"Chandrodoy Chattopadhyay,&nbsp;Kalidas Mandal,&nbsp;Debmalya Sain\",\"doi\":\"10.1007/s43036-024-00401-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We characterize the norm attainment set of a linear operator from <span>\\\\( \\\\ell _{\\\\infty }^{2}({\\\\mathbb {C}}) \\\\)</span> to <span>\\\\( \\\\ell _{1}^{2}({\\\\mathbb {C}}), \\\\)</span> with the help of a physical model involving two clocks entangled in a specific way. More generally, we introduce the (<i>m</i>, <i>n</i>)-clock Problem and establish its equivalence with computing the <span>\\\\(\\\\ell _{\\\\infty }-\\\\ell _1\\\\)</span> norm of an <span>\\\\( m \\\\times n \\\\)</span> matrix. We further give an explicit description of the smooth and the non-smooth points in <span>\\\\({\\\\mathbb {L}}\\\\big (\\\\ell _\\\\infty ^2({\\\\mathbb {C}}),\\\\ell _1^2({\\\\mathbb {C}})\\\\big ).\\\\)</span></p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00401-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00401-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们借助一个涉及以特定方式纠缠的两个时钟的物理模型,描述了从\( \ell _{\infty }^{2}({\mathbb {C}}) \)到\( \ell _{1}^{2}({\mathbb {C}}), \)的线性算子的规范达到集。更广义地说,我们引入了(m, n)-时钟问题,并将其等同于计算一个(m乘以n)矩阵的(ell _{infty }-\ell _1)规范。我们进一步给出了在 \({\mathbb {L}}\big (\ell _{infty ^2({/mathbb {C}}),\ell _1^2({\mathbb {C}})\big ).\) 中光滑点和非光滑点的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the (m, n)-clock problem and the \(\ell _{\infty }-\ell _1\) norm of a matrix

We characterize the norm attainment set of a linear operator from \( \ell _{\infty }^{2}({\mathbb {C}}) \) to \( \ell _{1}^{2}({\mathbb {C}}), \) with the help of a physical model involving two clocks entangled in a specific way. More generally, we introduce the (mn)-clock Problem and establish its equivalence with computing the \(\ell _{\infty }-\ell _1\) norm of an \( m \times n \) matrix. We further give an explicit description of the smooth and the non-smooth points in \({\mathbb {L}}\big (\ell _\infty ^2({\mathbb {C}}),\ell _1^2({\mathbb {C}})\big ).\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信