Hilya N. Iman, Henry Susilo, Adhi Satriyatama, Ignatius D. M. Budi, Kiki A. Kurnia, I. G. Wenten, K. Khoiruddin
{"title":"真菌壳聚糖改性聚醚砜膜的分离性能和抗堵塞性","authors":"Hilya N. Iman, Henry Susilo, Adhi Satriyatama, Ignatius D. M. Budi, Kiki A. Kurnia, I. G. Wenten, K. Khoiruddin","doi":"10.1186/s13065-024-01341-w","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the enhancement of polyethersulfone (PES) membranes through the incorporation of chitosan derived from the lignicolous fungus <i>Ganoderma sp</i>. Utilizing wet phase inversion and solution casting techniques, chitosan was successfully integrated into the PES matrix, as confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), which indicated a high deacetylation degree of 75.7%. The incorporation of chitosan significantly increased the membrane hydrophilicity, as evidenced by a reduction in the water contact angle and a substantial improvement in pure water permeability, from 17.9 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup> to 27.3 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>. The membrane anti-fouling properties were also notably enhanced, with the Flux Recovery Ratio (FRR) increasing from approximately 60–80%. Moreover, the chitosan-modified PES/CS membrane, particularly at a 5% chitosan concentration, demonstrated exceptional efficacy in pollutant removal, achieving over 90% elimination of total suspended solids, cadmium (Cd), and lead (Pb), alongside a 79% reduction in color during the treatment of textile wastewater.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01341-w","citationCount":"0","resultStr":"{\"title\":\"Separation properties and fouling resistance of polyethersulfone membrane modified by fungal chitosan\",\"authors\":\"Hilya N. Iman, Henry Susilo, Adhi Satriyatama, Ignatius D. M. Budi, Kiki A. Kurnia, I. G. Wenten, K. Khoiruddin\",\"doi\":\"10.1186/s13065-024-01341-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the enhancement of polyethersulfone (PES) membranes through the incorporation of chitosan derived from the lignicolous fungus <i>Ganoderma sp</i>. Utilizing wet phase inversion and solution casting techniques, chitosan was successfully integrated into the PES matrix, as confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), which indicated a high deacetylation degree of 75.7%. The incorporation of chitosan significantly increased the membrane hydrophilicity, as evidenced by a reduction in the water contact angle and a substantial improvement in pure water permeability, from 17.9 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup> to 27.3 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>. The membrane anti-fouling properties were also notably enhanced, with the Flux Recovery Ratio (FRR) increasing from approximately 60–80%. Moreover, the chitosan-modified PES/CS membrane, particularly at a 5% chitosan concentration, demonstrated exceptional efficacy in pollutant removal, achieving over 90% elimination of total suspended solids, cadmium (Cd), and lead (Pb), alongside a 79% reduction in color during the treatment of textile wastewater.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01341-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-024-01341-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01341-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Separation properties and fouling resistance of polyethersulfone membrane modified by fungal chitosan
This research explores the enhancement of polyethersulfone (PES) membranes through the incorporation of chitosan derived from the lignicolous fungus Ganoderma sp. Utilizing wet phase inversion and solution casting techniques, chitosan was successfully integrated into the PES matrix, as confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), which indicated a high deacetylation degree of 75.7%. The incorporation of chitosan significantly increased the membrane hydrophilicity, as evidenced by a reduction in the water contact angle and a substantial improvement in pure water permeability, from 17.9 L m-2 h-1 bar-1 to 27.3 L m-2 h-1 bar-1. The membrane anti-fouling properties were also notably enhanced, with the Flux Recovery Ratio (FRR) increasing from approximately 60–80%. Moreover, the chitosan-modified PES/CS membrane, particularly at a 5% chitosan concentration, demonstrated exceptional efficacy in pollutant removal, achieving over 90% elimination of total suspended solids, cadmium (Cd), and lead (Pb), alongside a 79% reduction in color during the treatment of textile wastewater.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.