基于部分可观测马尔可夫博弈的微电网能源调度优化

Jiakai Gong;Nuo Yu;Fen Han;Bin Tang;Haolong Wu;Yuan Ge
{"title":"基于部分可观测马尔可夫博弈的微电网能源调度优化","authors":"Jiakai Gong;Nuo Yu;Fen Han;Bin Tang;Haolong Wu;Yuan Ge","doi":"10.1109/TAI.2024.3428510","DOIUrl":null,"url":null,"abstract":"Microgrids (MGs) are essential for enhancing energy efficiency and minimizing power usage through the regulation of energy storage systems. Nevertheless, privacy-related concerns obstruct the real-time precise regulation of these systems due to unavailable state-of-charge (SOC) data. This article introduces a self-adaptive energy scheduling optimization framework for MGs that operates without SOC information, utilizing a partially observable Markov game (POMG) to decrease energy usage. Furthermore, to develop an optimal energy scheduling strategy, a MG system optimization approach using recurrent multiagent deep deterministic policy gradient (RMADDPG) is presented. This method is evaluated against other existing techniques such as MADDPG, deterministic recurrent policy gradient (DRPG), and independent Q-learning (IQL), demonstrating reductions in electrical energy consumption by 4.29%, 5.56%, and 12.95%, respectively, according to simulation outcomes.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5371-5380"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Scheduling Optimization for Microgrids Based on Partially Observable Markov Game\",\"authors\":\"Jiakai Gong;Nuo Yu;Fen Han;Bin Tang;Haolong Wu;Yuan Ge\",\"doi\":\"10.1109/TAI.2024.3428510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids (MGs) are essential for enhancing energy efficiency and minimizing power usage through the regulation of energy storage systems. Nevertheless, privacy-related concerns obstruct the real-time precise regulation of these systems due to unavailable state-of-charge (SOC) data. This article introduces a self-adaptive energy scheduling optimization framework for MGs that operates without SOC information, utilizing a partially observable Markov game (POMG) to decrease energy usage. Furthermore, to develop an optimal energy scheduling strategy, a MG system optimization approach using recurrent multiagent deep deterministic policy gradient (RMADDPG) is presented. This method is evaluated against other existing techniques such as MADDPG, deterministic recurrent policy gradient (DRPG), and independent Q-learning (IQL), demonstrating reductions in electrical energy consumption by 4.29%, 5.56%, and 12.95%, respectively, according to simulation outcomes.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 11\",\"pages\":\"5371-5380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599942/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599942/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微电网(MGs)对于通过调节储能系统提高能源效率和最大限度地减少用电量至关重要。然而,由于无法获得充电状态(SOC)数据,与隐私相关的问题阻碍了这些系统的实时精确调节。本文介绍了在没有 SOC 信息的情况下运行的 MG 自适应能量调度优化框架,利用部分可观测马尔可夫博弈(POMG)来减少能量使用。此外,为了制定最佳能源调度策略,还介绍了一种使用递归多代理深度确定性策略梯度(RMADDPG)的 MG 系统优化方法。该方法与其他现有技术(如 MADDPG、确定性递归策略梯度(DRPG)和独立 Q-learning(IQL))进行了对比评估,根据模拟结果,电能消耗分别减少了 4.29%、5.56% 和 12.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Scheduling Optimization for Microgrids Based on Partially Observable Markov Game
Microgrids (MGs) are essential for enhancing energy efficiency and minimizing power usage through the regulation of energy storage systems. Nevertheless, privacy-related concerns obstruct the real-time precise regulation of these systems due to unavailable state-of-charge (SOC) data. This article introduces a self-adaptive energy scheduling optimization framework for MGs that operates without SOC information, utilizing a partially observable Markov game (POMG) to decrease energy usage. Furthermore, to develop an optimal energy scheduling strategy, a MG system optimization approach using recurrent multiagent deep deterministic policy gradient (RMADDPG) is presented. This method is evaluated against other existing techniques such as MADDPG, deterministic recurrent policy gradient (DRPG), and independent Q-learning (IQL), demonstrating reductions in electrical energy consumption by 4.29%, 5.56%, and 12.95%, respectively, according to simulation outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信