基于因子图的高移动性目标轨迹跟踪技术

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Jiang;Nopphon Keerativoranan;Tad Matsumoto;Jun-ichi Takada
{"title":"基于因子图的高移动性目标轨迹跟踪技术","authors":"Lei Jiang;Nopphon Keerativoranan;Tad Matsumoto;Jun-ichi Takada","doi":"10.23919/comex.2024XBL0132","DOIUrl":null,"url":null,"abstract":"This paper presents a trajectory tracking algorithm for high-mobility targets using an extended Kalman smoothing (EKS)-based factor graph (FG). Traditional tracking methods often face challenges in maintaining accuracy and computational efficiency when dealing with fast-moving objects. Leveraging the probabilistic framework of factor graphs and robust estimation of EKS, the algorithm enhances tracking precision for fast-moving objects. Extensive simulations across various motion models demonstrate improved accuracy and robustness. The results indicate that this method effectively addresses the limitations of conventional tracking algorithms, providing a promising solution for applications in aviation, autonomous vehicles, and other domains requiring high-mobility tracking.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 11","pages":"431-434"},"PeriodicalIF":0.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675312","citationCount":"0","resultStr":"{\"title\":\"Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility\",\"authors\":\"Lei Jiang;Nopphon Keerativoranan;Tad Matsumoto;Jun-ichi Takada\",\"doi\":\"10.23919/comex.2024XBL0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a trajectory tracking algorithm for high-mobility targets using an extended Kalman smoothing (EKS)-based factor graph (FG). Traditional tracking methods often face challenges in maintaining accuracy and computational efficiency when dealing with fast-moving objects. Leveraging the probabilistic framework of factor graphs and robust estimation of EKS, the algorithm enhances tracking precision for fast-moving objects. Extensive simulations across various motion models demonstrate improved accuracy and robustness. The results indicate that this method effectively addresses the limitations of conventional tracking algorithms, providing a promising solution for applications in aviation, autonomous vehicles, and other domains requiring high-mobility tracking.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 11\",\"pages\":\"431-434\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675312\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675312/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10675312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用基于扩展卡尔曼平滑(EKS)的因子图(FG)对高移动性目标进行轨迹跟踪的算法。传统的跟踪方法在处理快速移动的目标时,往往在保持精度和计算效率方面面临挑战。利用因子图的概率框架和 EKS 的稳健估计,该算法提高了对快速移动物体的跟踪精度。通过对各种运动模型的广泛模拟,证明了精度和鲁棒性的提高。结果表明,这种方法有效地解决了传统跟踪算法的局限性,为航空、自动驾驶汽车和其他需要高移动性跟踪的领域的应用提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility
This paper presents a trajectory tracking algorithm for high-mobility targets using an extended Kalman smoothing (EKS)-based factor graph (FG). Traditional tracking methods often face challenges in maintaining accuracy and computational efficiency when dealing with fast-moving objects. Leveraging the probabilistic framework of factor graphs and robust estimation of EKS, the algorithm enhances tracking precision for fast-moving objects. Extensive simulations across various motion models demonstrate improved accuracy and robustness. The results indicate that this method effectively addresses the limitations of conventional tracking algorithms, providing a promising solution for applications in aviation, autonomous vehicles, and other domains requiring high-mobility tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信