Xiang Kun Cui, Yu Ding, Li Feng, Li Ming Chen, Yang Mei Hu, Hui Chen, Chong-Qing Wan
{"title":"离子液体功能化金属有机框架及其用于锂离子传导的高性能固体电解质","authors":"Xiang Kun Cui, Yu Ding, Li Feng, Li Ming Chen, Yang Mei Hu, Hui Chen, Chong-Qing Wan","doi":"10.1039/d4dt02756f","DOIUrl":null,"url":null,"abstract":"Herein, we report a new type solid-state electrolyte based on MOF matrix and Li+ ionic liquid. By covalent bonding the Li+ ionic liquids (MIMS·LiTFSI) on the stable UiO-67 framework, the obtained crystallineILLi-MOF material exhibited high ion conductivities within the wide temperature range (30 oC 1.62 × 10-3 S cm-1, 110 oC 1.26 × 10-2 S cm-1) and efficient Li+ transport (tLi+ = 0.88) [MIMS: 1-(1-mthyl-3-imidazolio) propane-3-sulfonate), LiTFSI: lithium bis(trifluoromethane sulfonyl)imide]. Characterization and control experiment showed the ordered structure of ionic-liquid moiety (MIMS·LiTFSI) arranged along the infinite channel with the ultramicropore (< 1 nm) in the MOF well accounted for the high and efficient target Li+ transfer. Also,such two in one strategy endows such crystalline electrolyte with the merits such as umflammalbe property, stable and unleakage desired.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic-liquid Functionalized Metal-organic Framework and Its High Performance Solid Electrolyte for Lithium-ion Conduction\",\"authors\":\"Xiang Kun Cui, Yu Ding, Li Feng, Li Ming Chen, Yang Mei Hu, Hui Chen, Chong-Qing Wan\",\"doi\":\"10.1039/d4dt02756f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we report a new type solid-state electrolyte based on MOF matrix and Li+ ionic liquid. By covalent bonding the Li+ ionic liquids (MIMS·LiTFSI) on the stable UiO-67 framework, the obtained crystallineILLi-MOF material exhibited high ion conductivities within the wide temperature range (30 oC 1.62 × 10-3 S cm-1, 110 oC 1.26 × 10-2 S cm-1) and efficient Li+ transport (tLi+ = 0.88) [MIMS: 1-(1-mthyl-3-imidazolio) propane-3-sulfonate), LiTFSI: lithium bis(trifluoromethane sulfonyl)imide]. Characterization and control experiment showed the ordered structure of ionic-liquid moiety (MIMS·LiTFSI) arranged along the infinite channel with the ultramicropore (< 1 nm) in the MOF well accounted for the high and efficient target Li+ transfer. Also,such two in one strategy endows such crystalline electrolyte with the merits such as umflammalbe property, stable and unleakage desired.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt02756f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02756f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Ionic-liquid Functionalized Metal-organic Framework and Its High Performance Solid Electrolyte for Lithium-ion Conduction
Herein, we report a new type solid-state electrolyte based on MOF matrix and Li+ ionic liquid. By covalent bonding the Li+ ionic liquids (MIMS·LiTFSI) on the stable UiO-67 framework, the obtained crystallineILLi-MOF material exhibited high ion conductivities within the wide temperature range (30 oC 1.62 × 10-3 S cm-1, 110 oC 1.26 × 10-2 S cm-1) and efficient Li+ transport (tLi+ = 0.88) [MIMS: 1-(1-mthyl-3-imidazolio) propane-3-sulfonate), LiTFSI: lithium bis(trifluoromethane sulfonyl)imide]. Characterization and control experiment showed the ordered structure of ionic-liquid moiety (MIMS·LiTFSI) arranged along the infinite channel with the ultramicropore (< 1 nm) in the MOF well accounted for the high and efficient target Li+ transfer. Also,such two in one strategy endows such crystalline electrolyte with the merits such as umflammalbe property, stable and unleakage desired.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.