Wanmin Chen, Na Xu, Lei Qin, Yi-Fei Deng, Gui-Lin Zhuang, Zhe Zhang, Ting-Zheng Xie, Pingshan Wang, Zhiping Zheng
{"title":"用于催化克诺文纳格尔缩合的中空异金属团簇","authors":"Wanmin Chen, Na Xu, Lei Qin, Yi-Fei Deng, Gui-Lin Zhuang, Zhe Zhang, Ting-Zheng Xie, Pingshan Wang, Zhiping Zheng","doi":"10.1002/anie.202420770","DOIUrl":null,"url":null,"abstract":"Lanthanide-containing clusters are synthetically Lanthanide-containing clusters are synthetically challenging and with significant chemical and materials applications. Herein, two isostructural heterometallic clusters of the formula (NO3)12@[Ln132Ni78(OH)292(IDA)48(CH3COO)96(NO3)12(H2O)78]Cl44·xH2O·yCH3OH (IDA = iminodiacetate; Ln = Gd 1, x = 110, y = 0; Ln = Eu 2, x = 95, y = 40) were obtained via co-hydrolysis of Ln3+ (Gd3+ or Eu3+) and Ni2+ in the presence of iminodiacetate (IDA). Crystallographic studies show that each features a truncated tetrahedral core of Ln132Ni78 within which a void of 5.5 Å in diameter; connecting the central cage and its exterior are four trumpet-like passageways surface-decorated with dinuclear units of [Gd(μ3-OH)2Gd]. Mass spectroscopic analyses indicate that both clusters maintained their structural integrity in aqueous solution, with cryo-electron microscopy providing the most convincing visual evidence in support of the cluster's solution stability. Size-selective Knoevenagel condensation, believed to occur in the passageways on the basis of experimental and molecular modeling results, was achieved in the presence of 1. The application of 1 as a uniquely structured molecular reactor and a recyclable heterogeneous catalyst was further illustrated by the one-pot three-component synthesis of biologically and pharmaceutically significant 4H-pyran derivatives.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"69 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hollowed-Out Heterometallic Cluster for Catalytic Knoevenagel Condensation\",\"authors\":\"Wanmin Chen, Na Xu, Lei Qin, Yi-Fei Deng, Gui-Lin Zhuang, Zhe Zhang, Ting-Zheng Xie, Pingshan Wang, Zhiping Zheng\",\"doi\":\"10.1002/anie.202420770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lanthanide-containing clusters are synthetically Lanthanide-containing clusters are synthetically challenging and with significant chemical and materials applications. Herein, two isostructural heterometallic clusters of the formula (NO3)12@[Ln132Ni78(OH)292(IDA)48(CH3COO)96(NO3)12(H2O)78]Cl44·xH2O·yCH3OH (IDA = iminodiacetate; Ln = Gd 1, x = 110, y = 0; Ln = Eu 2, x = 95, y = 40) were obtained via co-hydrolysis of Ln3+ (Gd3+ or Eu3+) and Ni2+ in the presence of iminodiacetate (IDA). Crystallographic studies show that each features a truncated tetrahedral core of Ln132Ni78 within which a void of 5.5 Å in diameter; connecting the central cage and its exterior are four trumpet-like passageways surface-decorated with dinuclear units of [Gd(μ3-OH)2Gd]. Mass spectroscopic analyses indicate that both clusters maintained their structural integrity in aqueous solution, with cryo-electron microscopy providing the most convincing visual evidence in support of the cluster's solution stability. Size-selective Knoevenagel condensation, believed to occur in the passageways on the basis of experimental and molecular modeling results, was achieved in the presence of 1. The application of 1 as a uniquely structured molecular reactor and a recyclable heterogeneous catalyst was further illustrated by the one-pot three-component synthesis of biologically and pharmaceutically significant 4H-pyran derivatives.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202420770\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420770","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Hollowed-Out Heterometallic Cluster for Catalytic Knoevenagel Condensation
Lanthanide-containing clusters are synthetically Lanthanide-containing clusters are synthetically challenging and with significant chemical and materials applications. Herein, two isostructural heterometallic clusters of the formula (NO3)12@[Ln132Ni78(OH)292(IDA)48(CH3COO)96(NO3)12(H2O)78]Cl44·xH2O·yCH3OH (IDA = iminodiacetate; Ln = Gd 1, x = 110, y = 0; Ln = Eu 2, x = 95, y = 40) were obtained via co-hydrolysis of Ln3+ (Gd3+ or Eu3+) and Ni2+ in the presence of iminodiacetate (IDA). Crystallographic studies show that each features a truncated tetrahedral core of Ln132Ni78 within which a void of 5.5 Å in diameter; connecting the central cage and its exterior are four trumpet-like passageways surface-decorated with dinuclear units of [Gd(μ3-OH)2Gd]. Mass spectroscopic analyses indicate that both clusters maintained their structural integrity in aqueous solution, with cryo-electron microscopy providing the most convincing visual evidence in support of the cluster's solution stability. Size-selective Knoevenagel condensation, believed to occur in the passageways on the basis of experimental and molecular modeling results, was achieved in the presence of 1. The application of 1 as a uniquely structured molecular reactor and a recyclable heterogeneous catalyst was further illustrated by the one-pot three-component synthesis of biologically and pharmaceutically significant 4H-pyran derivatives.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.