Jonathan Russell Nitschke, Amit Ghosh, John D Thoburn
{"title":"通过催化剂封装实现光响应醛还原催化反应","authors":"Jonathan Russell Nitschke, Amit Ghosh, John D Thoburn","doi":"10.1002/anie.202419575","DOIUrl":null,"url":null,"abstract":"We report a light-responsive tetrahedral metal–organic capsule that binds a perrhenate catalyst, which is released selectively upon irradiation with 350 nm light, turning on the catalytic reduction of organic carbonyls by hydrosilanes. The catalytic activity can be switched off by heating at 75 °C for 2.5 h, which stimulates capsule reformation and catalyst re-encapsulation. Multiple on-off cycles were shown, with a clear relationship between product yield and light irradiation time. Encapsulation thus enables the coupling of light-responsiveness to catalysis in a manner that might be generalized to other catalysts and capsules.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"17 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Responsive Aldehyde-Reduction Catalysis Through Catalyst Encapsulation\",\"authors\":\"Jonathan Russell Nitschke, Amit Ghosh, John D Thoburn\",\"doi\":\"10.1002/anie.202419575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a light-responsive tetrahedral metal–organic capsule that binds a perrhenate catalyst, which is released selectively upon irradiation with 350 nm light, turning on the catalytic reduction of organic carbonyls by hydrosilanes. The catalytic activity can be switched off by heating at 75 °C for 2.5 h, which stimulates capsule reformation and catalyst re-encapsulation. Multiple on-off cycles were shown, with a clear relationship between product yield and light irradiation time. Encapsulation thus enables the coupling of light-responsiveness to catalysis in a manner that might be generalized to other catalysts and capsules.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202419575\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419575","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们报告了一种光响应四面体金属有机胶囊,该胶囊结合了过铼酸盐催化剂,在 350 纳米光照射下,过铼酸盐催化剂被选择性释放,从而开启了氢硅烷对有机羰基的催化还原。在 75 °C 下加热 2.5 小时可关闭催化活性,从而促进胶囊重整和催化剂重新封装。该催化剂可进行多次开关循环,产品产量与光照时间之间的关系非常明显。因此,封装可以将光响应性与催化作用结合起来,并可推广到其他催化剂和胶囊中。
Light-Responsive Aldehyde-Reduction Catalysis Through Catalyst Encapsulation
We report a light-responsive tetrahedral metal–organic capsule that binds a perrhenate catalyst, which is released selectively upon irradiation with 350 nm light, turning on the catalytic reduction of organic carbonyls by hydrosilanes. The catalytic activity can be switched off by heating at 75 °C for 2.5 h, which stimulates capsule reformation and catalyst re-encapsulation. Multiple on-off cycles were shown, with a clear relationship between product yield and light irradiation time. Encapsulation thus enables the coupling of light-responsiveness to catalysis in a manner that might be generalized to other catalysts and capsules.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.