褐藻糖胶的体外发酵特性及其对人体肠道微生物群和代谢物的调节作用

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xu Zhou, Yuyan Zhang, Li Wei, Yuhan Yang, Botao Wang, Cuiping Liu, Junying Bai, Chen Wang
{"title":"褐藻糖胶的体外发酵特性及其对人体肠道微生物群和代谢物的调节作用","authors":"Xu Zhou, Yuyan Zhang, Li Wei, Yuhan Yang, Botao Wang, Cuiping Liu, Junying Bai, Chen Wang","doi":"10.1016/j.foodchem.2024.141998","DOIUrl":null,"url":null,"abstract":"Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of <em>Escherichia_shigella</em> and <em>Blebsiella</em> and increased the relative abundance of <em>Bifidobacterium</em> and <em>Lactobacillus</em>. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites\",\"authors\":\"Xu Zhou, Yuyan Zhang, Li Wei, Yuhan Yang, Botao Wang, Cuiping Liu, Junying Bai, Chen Wang\",\"doi\":\"10.1016/j.foodchem.2024.141998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of <em>Escherichia_shigella</em> and <em>Blebsiella</em> and increased the relative abundance of <em>Bifidobacterium</em> and <em>Lactobacillus</em>. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.141998\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

膳食多糖会影响宿主体内的肠道微生物及其代谢产物。阐明多糖、肠道微生物群及其代谢产物之间的关系有助于制定膳食营养干预策略。因此,我们探讨了褐藻糖胶对人体肠道微生物群及其代谢产物的调节作用。发酵48小时后,褐藻糖胶明显降低了肉汤中的pH值,同时增加了总短链脂肪酸、乙酸和丙酸的含量。褐藻糖胶明显降低了志贺氏菌和博莱氏菌的相对含量,提高了双歧杆菌和乳酸杆菌的相对含量。同时,褐藻糖胶改变了肠道微生物代谢物的组成。这些结果表明,褐藻糖胶可以调节肠道菌群和宿主的新陈代谢,从而有助于宿主的肠道健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites

In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites
Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of Escherichia_shigella and Blebsiella and increased the relative abundance of Bifidobacterium and Lactobacillus. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信