通过充气中空芯光纤的偏振优化下变频产生 180 mW、1 MHz、15 fs 载波包络相位稳定脉冲

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Anchit Srivastava, Kilian Scheffter, Soyeon Jun, Andreas Herbst, Hanieh Fattahi
{"title":"通过充气中空芯光纤的偏振优化下变频产生 180 mW、1 MHz、15 fs 载波包络相位稳定脉冲","authors":"Anchit Srivastava, Kilian Scheffter, Soyeon Jun, Andreas Herbst, Hanieh Fattahi","doi":"10.1063/5.0215106","DOIUrl":null,"url":null,"abstract":"Gas-filled hollow core fibers allow the generation of single-cycle pulses at megahertz repetition rates. When coupled with difference frequency generation, they can be an ideal driver for generating carrier-envelope phase stable, octave-spanning pulses in the short-wavelength infrared. In this work, we investigate the dependence of the polarization state in gas-filled hollow-core fibers (HCF) on the subsequent difference frequency generation stage. We show that by adjusting the input polarization state of light in geometrically symmetric systems, such as hollow-core fibers, one can achieve precise control over the polarization state of the output pulses. This manipulation preserves the temporal characteristics of the generated ultrashort pulses, especially when operating at a near single-cycle regime. We leverage this property to boost the downconversion efficiency of the near single-cycle pulses in a type I difference frequency generation stage. Our technique overcomes the bandwidth and dispersion constraints of the previous methods that rely on broadband waveplates or adjustment of crystal axes relative to the laboratory frame. This advancement is crucial for experiments demanding pure polarization states in the eigenmodes of the laboratory frame.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"31 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"180 mW, 1 MHz, 15 fs carrier-envelope phase-stable pulse generation via polarization-optimized down-conversion from gas-filled hollow-core fiber\",\"authors\":\"Anchit Srivastava, Kilian Scheffter, Soyeon Jun, Andreas Herbst, Hanieh Fattahi\",\"doi\":\"10.1063/5.0215106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas-filled hollow core fibers allow the generation of single-cycle pulses at megahertz repetition rates. When coupled with difference frequency generation, they can be an ideal driver for generating carrier-envelope phase stable, octave-spanning pulses in the short-wavelength infrared. In this work, we investigate the dependence of the polarization state in gas-filled hollow-core fibers (HCF) on the subsequent difference frequency generation stage. We show that by adjusting the input polarization state of light in geometrically symmetric systems, such as hollow-core fibers, one can achieve precise control over the polarization state of the output pulses. This manipulation preserves the temporal characteristics of the generated ultrashort pulses, especially when operating at a near single-cycle regime. We leverage this property to boost the downconversion efficiency of the near single-cycle pulses in a type I difference frequency generation stage. Our technique overcomes the bandwidth and dispersion constraints of the previous methods that rely on broadband waveplates or adjustment of crystal axes relative to the laboratory frame. This advancement is crucial for experiments demanding pure polarization states in the eigenmodes of the laboratory frame.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0215106\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0215106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

充气空芯光纤可以产生百万赫兹重复率的单周期脉冲。当与差分频率生成相结合时,它们可以成为在短波长红外线中生成载流子包络相位稳定、倍频程跨度脉冲的理想驱动器。在这项工作中,我们研究了充气空芯光纤(HCF)中的偏振态对后续差分频率发生阶段的依赖性。我们的研究表明,通过调整几何对称系统(如空心光纤)中光的输入偏振态,可以实现对输出脉冲偏振态的精确控制。这种操作方法保留了所产生的超短脉冲的时间特性,尤其是在接近单周期运行时。我们利用这一特性提高了 I 型差频发生级中近单周期脉冲的下变频效率。我们的技术克服了以往方法的带宽和色散限制,这些方法依赖于宽带波板或相对于实验室框架的晶体轴调整。这一进步对于要求在实验室框架的特征模式中实现纯偏振态的实验至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
180 mW, 1 MHz, 15 fs carrier-envelope phase-stable pulse generation via polarization-optimized down-conversion from gas-filled hollow-core fiber
Gas-filled hollow core fibers allow the generation of single-cycle pulses at megahertz repetition rates. When coupled with difference frequency generation, they can be an ideal driver for generating carrier-envelope phase stable, octave-spanning pulses in the short-wavelength infrared. In this work, we investigate the dependence of the polarization state in gas-filled hollow-core fibers (HCF) on the subsequent difference frequency generation stage. We show that by adjusting the input polarization state of light in geometrically symmetric systems, such as hollow-core fibers, one can achieve precise control over the polarization state of the output pulses. This manipulation preserves the temporal characteristics of the generated ultrashort pulses, especially when operating at a near single-cycle regime. We leverage this property to boost the downconversion efficiency of the near single-cycle pulses in a type I difference frequency generation stage. Our technique overcomes the bandwidth and dispersion constraints of the previous methods that rely on broadband waveplates or adjustment of crystal axes relative to the laboratory frame. This advancement is crucial for experiments demanding pure polarization states in the eigenmodes of the laboratory frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信