识别 FePS3 在反铁磁相变过程中的带状结构变化

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Benjamin Pestka, Jeff Strasdas, Gustav Bihlmayer, Adam Krzysztof Budniak, Marcus Liebmann, Niklas Leuth, Honey Boban, Vitaliy Feyer, Iulia Cojocariu, Daniel Baranowski, Simone Mearini, Yaron Amouyal, Lutz Waldecker, Bernd Beschoten, Christoph Stampfer, Lukasz Plucinski, Efrat Lifshitz, Peter Kratzer, Markus Morgenstern
{"title":"识别 FePS3 在反铁磁相变过程中的带状结构变化","authors":"Benjamin Pestka, Jeff Strasdas, Gustav Bihlmayer, Adam Krzysztof Budniak, Marcus Liebmann, Niklas Leuth, Honey Boban, Vitaliy Feyer, Iulia Cojocariu, Daniel Baranowski, Simone Mearini, Yaron Amouyal, Lutz Waldecker, Bernd Beschoten, Christoph Stampfer, Lukasz Plucinski, Efrat Lifshitz, Peter Kratzer, Markus Morgenstern","doi":"10.1021/acsnano.4c12520","DOIUrl":null,"url":null,"abstract":"Magnetic 2D materials enable interesting tuning options of magnetism. As an example, the van der Waals material FePS<sub>3</sub>, a zig-zag-type intralayer antiferromagnet, exhibits very strong magnetoelastic coupling due to the different bond lengths along different ferromagnetic and antiferromagnetic coupling directions enabling elastic tuning of magnetic properties. The likely cause of the length change is the intricate competition between direct exchange of the Fe atoms and superexchange via the S and P atoms. To elucidate this interplay, we study the band structure of exfoliated FePS<sub>3</sub> by μm scale ARPES (angular resolved photoelectron spectroscopy), both, above and below the Néel temperature <i>T</i><sub>N</sub>. We found three characteristic changes across <i>T</i><sub>N</sub>. They involve S 3<i>p</i>-type bands, Fe 3<i>d</i>-type bands and P 3<i>p</i>-type bands, respectively, as attributed by comparison with density functional theory calculations (DFT + U). This highlights the involvement of all the atoms in the magnetic phase transition providing independent evidence for the intricate exchange paths.","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Band Structure Changes of FePS3 across the Antiferromagnetic Phase Transition\",\"authors\":\"Benjamin Pestka, Jeff Strasdas, Gustav Bihlmayer, Adam Krzysztof Budniak, Marcus Liebmann, Niklas Leuth, Honey Boban, Vitaliy Feyer, Iulia Cojocariu, Daniel Baranowski, Simone Mearini, Yaron Amouyal, Lutz Waldecker, Bernd Beschoten, Christoph Stampfer, Lukasz Plucinski, Efrat Lifshitz, Peter Kratzer, Markus Morgenstern\",\"doi\":\"10.1021/acsnano.4c12520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic 2D materials enable interesting tuning options of magnetism. As an example, the van der Waals material FePS<sub>3</sub>, a zig-zag-type intralayer antiferromagnet, exhibits very strong magnetoelastic coupling due to the different bond lengths along different ferromagnetic and antiferromagnetic coupling directions enabling elastic tuning of magnetic properties. The likely cause of the length change is the intricate competition between direct exchange of the Fe atoms and superexchange via the S and P atoms. To elucidate this interplay, we study the band structure of exfoliated FePS<sub>3</sub> by μm scale ARPES (angular resolved photoelectron spectroscopy), both, above and below the Néel temperature <i>T</i><sub>N</sub>. We found three characteristic changes across <i>T</i><sub>N</sub>. They involve S 3<i>p</i>-type bands, Fe 3<i>d</i>-type bands and P 3<i>p</i>-type bands, respectively, as attributed by comparison with density functional theory calculations (DFT + U). This highlights the involvement of all the atoms in the magnetic phase transition providing independent evidence for the intricate exchange paths.\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12520\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12520","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维磁性材料可以实现有趣的磁性调整选项。例如,范德瓦耳斯材料 FePS3 是一种人字形层内反铁磁体,由于沿着不同的铁磁和反铁磁耦合方向存在不同的键长,因此表现出非常强的磁弹性耦合,从而实现了磁性能的弹性调整。长度变化的可能原因是铁原子的直接交换与通过 S 原子和 P 原子进行的超交换之间错综复杂的竞争。为了阐明这种相互作用,我们通过微米尺度的角分辨光电子能谱(ARPES)研究了剥离的 FePS3 在高于和低于奈尔温度 TN 时的能带结构。我们发现在 TN 温度范围内有三个特征性变化。根据与密度泛函理论计算(DFT + U)的比较,它们分别涉及 S 3p 型带、Fe 3d 型带和 P 3p 型带。这表明所有原子都参与了磁性相变,为错综复杂的交换路径提供了独立证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying Band Structure Changes of FePS3 across the Antiferromagnetic Phase Transition

Identifying Band Structure Changes of FePS3 across the Antiferromagnetic Phase Transition
Magnetic 2D materials enable interesting tuning options of magnetism. As an example, the van der Waals material FePS3, a zig-zag-type intralayer antiferromagnet, exhibits very strong magnetoelastic coupling due to the different bond lengths along different ferromagnetic and antiferromagnetic coupling directions enabling elastic tuning of magnetic properties. The likely cause of the length change is the intricate competition between direct exchange of the Fe atoms and superexchange via the S and P atoms. To elucidate this interplay, we study the band structure of exfoliated FePS3 by μm scale ARPES (angular resolved photoelectron spectroscopy), both, above and below the Néel temperature TN. We found three characteristic changes across TN. They involve S 3p-type bands, Fe 3d-type bands and P 3p-type bands, respectively, as attributed by comparison with density functional theory calculations (DFT + U). This highlights the involvement of all the atoms in the magnetic phase transition providing independent evidence for the intricate exchange paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信