甲醇制丙烯工艺在钙改性和未改性沸石 ZSM-5 上的光照选择性描述符

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Abhay Dokania, Xuan Gong, Edy Abou-Hamad, Alla Dikhtiarenko, Tuiana Shoinkhorova, Yiru Ye, Javier Patarroyo, Nimer Wehbe, Abhishek Dutta Chowdhury, Jorge Gascon
{"title":"甲醇制丙烯工艺在钙改性和未改性沸石 ZSM-5 上的光照选择性描述符","authors":"Abhay Dokania, Xuan Gong, Edy Abou-Hamad, Alla Dikhtiarenko, Tuiana Shoinkhorova, Yiru Ye, Javier Patarroyo, Nimer Wehbe, Abhishek Dutta Chowdhury, Jorge Gascon","doi":"10.1016/j.checat.2024.101168","DOIUrl":null,"url":null,"abstract":"There is a growing demand for propylene calls for effective carbon reduction methods. The methanol-to-propylene (MTP) process stands out as a promising solution for meeting global propylene demand sustainably. In this study, we identify the mechanistic factors responsible for enhanced reactivity, superior propylene selectivity, and durable catalyst lifespan in the MTP process catalyzed by both unmodified siliceous and Ca-modified ZSM-5 zeolites. By employing advanced characterization techniques like <em>in situ</em> UV-visible and solid-state NMR spectroscopy, along with well-designed control experiments, we highlight the importance of the alkene cycle within the zigzag channel of zeolite ZSM-5 for superior propylene selectivity. Furthermore, our work identifies oxymethylene species as a key intermediate that enhances the lifetime of the alkene cycle and governs MTP catalysis. We also explore the synergistic interaction between Lewis-Brønsted acids and their impact on hydrocarbon pool species to deepen our understanding of zeolite catalysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"19 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illuminating selectivity descriptors for the methanol-to-propylene process over Ca-modified and unmodified zeolite ZSM-5\",\"authors\":\"Abhay Dokania, Xuan Gong, Edy Abou-Hamad, Alla Dikhtiarenko, Tuiana Shoinkhorova, Yiru Ye, Javier Patarroyo, Nimer Wehbe, Abhishek Dutta Chowdhury, Jorge Gascon\",\"doi\":\"10.1016/j.checat.2024.101168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing demand for propylene calls for effective carbon reduction methods. The methanol-to-propylene (MTP) process stands out as a promising solution for meeting global propylene demand sustainably. In this study, we identify the mechanistic factors responsible for enhanced reactivity, superior propylene selectivity, and durable catalyst lifespan in the MTP process catalyzed by both unmodified siliceous and Ca-modified ZSM-5 zeolites. By employing advanced characterization techniques like <em>in situ</em> UV-visible and solid-state NMR spectroscopy, along with well-designed control experiments, we highlight the importance of the alkene cycle within the zigzag channel of zeolite ZSM-5 for superior propylene selectivity. Furthermore, our work identifies oxymethylene species as a key intermediate that enhances the lifetime of the alkene cycle and governs MTP catalysis. We also explore the synergistic interaction between Lewis-Brønsted acids and their impact on hydrocarbon pool species to deepen our understanding of zeolite catalysis.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对丙烯的需求不断增长,要求采用有效的减碳方法。甲醇制丙烯(MTP)工艺是可持续满足全球丙烯需求的理想解决方案。在本研究中,我们找出了在未改性硅质和钙改性 ZSM-5 沸石催化的 MTP 工艺中,导致反应活性增强、丙烯选择性提高和催化剂寿命延长的机理因素。通过采用原位紫外可见光光谱和固态核磁共振光谱等先进的表征技术以及精心设计的对照实验,我们强调了沸石 ZSM-5 人字形通道内烯循环对卓越丙烯选择性的重要性。此外,我们的研究还发现氧亚甲基是一种关键的中间体,它能延长烯烃循环的寿命并影响 MTP 催化。我们还探索了路易斯-布伦斯特酸之间的协同作用及其对碳氢化合物池物种的影响,从而加深了我们对沸石催化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Illuminating selectivity descriptors for the methanol-to-propylene process over Ca-modified and unmodified zeolite ZSM-5

Illuminating selectivity descriptors for the methanol-to-propylene process over Ca-modified and unmodified zeolite ZSM-5
There is a growing demand for propylene calls for effective carbon reduction methods. The methanol-to-propylene (MTP) process stands out as a promising solution for meeting global propylene demand sustainably. In this study, we identify the mechanistic factors responsible for enhanced reactivity, superior propylene selectivity, and durable catalyst lifespan in the MTP process catalyzed by both unmodified siliceous and Ca-modified ZSM-5 zeolites. By employing advanced characterization techniques like in situ UV-visible and solid-state NMR spectroscopy, along with well-designed control experiments, we highlight the importance of the alkene cycle within the zigzag channel of zeolite ZSM-5 for superior propylene selectivity. Furthermore, our work identifies oxymethylene species as a key intermediate that enhances the lifetime of the alkene cycle and governs MTP catalysis. We also explore the synergistic interaction between Lewis-Brønsted acids and their impact on hydrocarbon pool species to deepen our understanding of zeolite catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信