具有独立振幅和频率调制的泵浦波长选择性全光学太赫兹元表面

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Yuan, Zhengang Lu, Guichuan Xu, Heyan Wang, Lin Han, Jiubin Tan
{"title":"具有独立振幅和频率调制的泵浦波长选择性全光学太赫兹元表面","authors":"Jing Yuan, Zhengang Lu, Guichuan Xu, Heyan Wang, Lin Han, Jiubin Tan","doi":"10.1021/acs.nanolett.4c04741","DOIUrl":null,"url":null,"abstract":"Tunable terahertz (THz) metasurfaces based on optical control are crucial in high-speed communication, nondestructive testing, and imaging. However, realizing independent optical tunability of multiple functions in the THz band remains challenging due to limitations in control materials. Here, we experimentally demonstrate a novel THz metasurface that employs two control materials combined with an electric-field-coupled inductor capacitor microstructure to achieve all-optical independent modulations of amplitude and frequency. Amplitude modulation is achieved through near-infrared optical pumping, reaching a maximum modulation depth of 94.42%. Broadband frequency modulation, spanning 0.21 THz, is accomplished using visible light pumping. The independent modulation function is owing to the odd-order nonlinear polarization characteristics of perovskite and the selective photon transition between the bottom Si island and the perovskite film. This work introduces a novel approach for all-optical independent modulation of THz devices, offering valuable insights for developing all-optical metasurfaces, intelligent light windows, and multidimensional ultrafast switches.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pump-Wavelength Selective All-Optical Terahertz Metasurface with Independent Amplitude and Frequency Modulations\",\"authors\":\"Jing Yuan, Zhengang Lu, Guichuan Xu, Heyan Wang, Lin Han, Jiubin Tan\",\"doi\":\"10.1021/acs.nanolett.4c04741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable terahertz (THz) metasurfaces based on optical control are crucial in high-speed communication, nondestructive testing, and imaging. However, realizing independent optical tunability of multiple functions in the THz band remains challenging due to limitations in control materials. Here, we experimentally demonstrate a novel THz metasurface that employs two control materials combined with an electric-field-coupled inductor capacitor microstructure to achieve all-optical independent modulations of amplitude and frequency. Amplitude modulation is achieved through near-infrared optical pumping, reaching a maximum modulation depth of 94.42%. Broadband frequency modulation, spanning 0.21 THz, is accomplished using visible light pumping. The independent modulation function is owing to the odd-order nonlinear polarization characteristics of perovskite and the selective photon transition between the bottom Si island and the perovskite film. This work introduces a novel approach for all-optical independent modulation of THz devices, offering valuable insights for developing all-optical metasurfaces, intelligent light windows, and multidimensional ultrafast switches.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04741\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04741","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于光学控制的可调谐太赫兹(THz)超表面在高速通信、无损检测和成像中至关重要。然而,由于控制材料的限制,在太赫兹波段实现多种功能的独立光学可调谐性仍然具有挑战性。在这里,我们通过实验展示了一种新型太赫兹元表面,它采用两种控制材料与电场耦合电感器电容器微结构相结合,实现了振幅和频率的全光学独立调制。振幅调制通过近红外光泵浦实现,最大调制深度达 94.42%。利用可见光泵浦实现了宽带频率调制,频率跨度为 0.21 太赫兹。这种独立的调制功能归功于包晶的奇阶非线性偏振特性以及底部硅岛和包晶薄膜之间的选择性光子转换。这项工作为太赫兹器件的全光独立调制引入了一种新方法,为开发全光元表面、智能光窗和多维超快开关提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pump-Wavelength Selective All-Optical Terahertz Metasurface with Independent Amplitude and Frequency Modulations

Pump-Wavelength Selective All-Optical Terahertz Metasurface with Independent Amplitude and Frequency Modulations
Tunable terahertz (THz) metasurfaces based on optical control are crucial in high-speed communication, nondestructive testing, and imaging. However, realizing independent optical tunability of multiple functions in the THz band remains challenging due to limitations in control materials. Here, we experimentally demonstrate a novel THz metasurface that employs two control materials combined with an electric-field-coupled inductor capacitor microstructure to achieve all-optical independent modulations of amplitude and frequency. Amplitude modulation is achieved through near-infrared optical pumping, reaching a maximum modulation depth of 94.42%. Broadband frequency modulation, spanning 0.21 THz, is accomplished using visible light pumping. The independent modulation function is owing to the odd-order nonlinear polarization characteristics of perovskite and the selective photon transition between the bottom Si island and the perovskite film. This work introduces a novel approach for all-optical independent modulation of THz devices, offering valuable insights for developing all-optical metasurfaces, intelligent light windows, and multidimensional ultrafast switches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信