{"title":"作为能量代谢调节器的三维半导体网络驱动骨再生中的血管生成","authors":"Youzhun Fan, Jiwei Sun, Wenjie Fan, Xianwei Zhong, Zhaoyi Yin, Bin Su, Jing Yao, Xinyu Hong, Jinxia Zhai, Zhengao Wang, Haoyan Chen, Fengyuan Guo, Xiufang Wen, Chengyun Ning, Lili Chen, Peng Yu","doi":"10.1021/acsnano.4c09971","DOIUrl":null,"url":null,"abstract":"Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration. The three-dimensional heterojunction interfaces facilitate electron transfer and establish internal electric fields at the nanoscale interfaces. The 3D-NTBH was found to noticeably accelerate glycolysis in endothelial cells, thereby rapidly providing energy to support cellular metabolic activities and ultimately driving angiogenesis within the bone tissue. Molecular dynamic simulations have demonstrated that the 3D-NTBH facilitates the exposure of fibronectin’s Arg-Gly-Asp peptide binding site, thereby regulating the glycolysis of endothelial cells. Further evidence suggests that 3D-NTBH promotes early vascular network reconstruction and bone regeneration in vivo. The findings of this research offer a promising research perspective for the design of vascularizing implants.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"23 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Semiconductor Network as Regulators of Energy Metabolism Drives Angiogenesis in Bone Regeneration\",\"authors\":\"Youzhun Fan, Jiwei Sun, Wenjie Fan, Xianwei Zhong, Zhaoyi Yin, Bin Su, Jing Yao, Xinyu Hong, Jinxia Zhai, Zhengao Wang, Haoyan Chen, Fengyuan Guo, Xiufang Wen, Chengyun Ning, Lili Chen, Peng Yu\",\"doi\":\"10.1021/acsnano.4c09971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration. The three-dimensional heterojunction interfaces facilitate electron transfer and establish internal electric fields at the nanoscale interfaces. The 3D-NTBH was found to noticeably accelerate glycolysis in endothelial cells, thereby rapidly providing energy to support cellular metabolic activities and ultimately driving angiogenesis within the bone tissue. Molecular dynamic simulations have demonstrated that the 3D-NTBH facilitates the exposure of fibronectin’s Arg-Gly-Asp peptide binding site, thereby regulating the glycolysis of endothelial cells. Further evidence suggests that 3D-NTBH promotes early vascular network reconstruction and bone regeneration in vivo. The findings of this research offer a promising research perspective for the design of vascularizing implants.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09971\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09971","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-Dimensional Semiconductor Network as Regulators of Energy Metabolism Drives Angiogenesis in Bone Regeneration
Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration. The three-dimensional heterojunction interfaces facilitate electron transfer and establish internal electric fields at the nanoscale interfaces. The 3D-NTBH was found to noticeably accelerate glycolysis in endothelial cells, thereby rapidly providing energy to support cellular metabolic activities and ultimately driving angiogenesis within the bone tissue. Molecular dynamic simulations have demonstrated that the 3D-NTBH facilitates the exposure of fibronectin’s Arg-Gly-Asp peptide binding site, thereby regulating the glycolysis of endothelial cells. Further evidence suggests that 3D-NTBH promotes early vascular network reconstruction and bone regeneration in vivo. The findings of this research offer a promising research perspective for the design of vascularizing implants.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.