{"title":"在具有不同超分子结构的聚乳酸/双面胶复合材料中实现形状记忆效应","authors":"Polina Kovaleva , Inna Bulygina , Anna Cheremnykh , Eugene Statnik , Ekaterina Ivantsova , Iuliia Sadykova , Mikhail Zadorozhnyy , Artem Korol , Fedor Senatov","doi":"10.1016/j.polymer.2024.127831","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the realization of the shape memory effect (SME) in composite materials composed of polylactide (PLA) filled with diopside particles exhibiting varied supramolecular structures, such as spherulites and amorphous lamellar structures. We investigated the influence of diopside filler on the thermomechanical properties and shape recovery behavior of PLA-based composites. Different supramolecular structures of PLA were achieved through controlled crystallization processes. Comprehensive characterization techniques, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA), were employed to elucidate the structure-property relationships. The results indicate that the diopside enhances the SME of PLA composites, with the degree of improvement being dependent on the specific supramolecular structure of the polymer matrix. Our findings provide insights into the design of advanced SMPs with tailored properties for potential applications in medicine.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127831"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of the shape memory effect in a composite material PLA/Diopside with different supramolecular structures\",\"authors\":\"Polina Kovaleva , Inna Bulygina , Anna Cheremnykh , Eugene Statnik , Ekaterina Ivantsova , Iuliia Sadykova , Mikhail Zadorozhnyy , Artem Korol , Fedor Senatov\",\"doi\":\"10.1016/j.polymer.2024.127831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the realization of the shape memory effect (SME) in composite materials composed of polylactide (PLA) filled with diopside particles exhibiting varied supramolecular structures, such as spherulites and amorphous lamellar structures. We investigated the influence of diopside filler on the thermomechanical properties and shape recovery behavior of PLA-based composites. Different supramolecular structures of PLA were achieved through controlled crystallization processes. Comprehensive characterization techniques, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA), were employed to elucidate the structure-property relationships. The results indicate that the diopside enhances the SME of PLA composites, with the degree of improvement being dependent on the specific supramolecular structure of the polymer matrix. Our findings provide insights into the design of advanced SMPs with tailored properties for potential applications in medicine.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"315 \",\"pages\":\"Article 127831\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124011674\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Realization of the shape memory effect in a composite material PLA/Diopside with different supramolecular structures
This study explores the realization of the shape memory effect (SME) in composite materials composed of polylactide (PLA) filled with diopside particles exhibiting varied supramolecular structures, such as spherulites and amorphous lamellar structures. We investigated the influence of diopside filler on the thermomechanical properties and shape recovery behavior of PLA-based composites. Different supramolecular structures of PLA were achieved through controlled crystallization processes. Comprehensive characterization techniques, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA), were employed to elucidate the structure-property relationships. The results indicate that the diopside enhances the SME of PLA composites, with the degree of improvement being dependent on the specific supramolecular structure of the polymer matrix. Our findings provide insights into the design of advanced SMPs with tailored properties for potential applications in medicine.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.