用工程结构变异来研究基因组功能

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Jonas Koeppel, Juliane Weller, Thomas Vanderstichele, Leopold Parts
{"title":"用工程结构变异来研究基因组功能","authors":"Jonas Koeppel, Juliane Weller, Thomas Vanderstichele, Leopold Parts","doi":"10.1038/s41588-024-01981-7","DOIUrl":null,"url":null,"abstract":"<p>Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering structural variants to interrogate genome function\",\"authors\":\"Jonas Koeppel, Juliane Weller, Thomas Vanderstichele, Leopold Parts\",\"doi\":\"10.1038/s41588-024-01981-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-024-01981-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-01981-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

结构变异,如缺失、重复、倒位和复杂的重排,可对基因表达、基因组稳定性、表型多样性和疾病易感性产生深远影响。结构变异可包含多达数百万个碱基,并有可能重新排列基因组的大部分片段。与点突变相比,结构变异对人类群体遗传多样性的贡献更大,对表型特征的影响也更大。直到最近,我们对结构变异影响的了解还主要停留在对自然发生变异的研究上。新的基因组工程工具能够产生缺失、插入、倒位和易位,加上新重组酶的发现和合成 DNA 构建的进步,现在能够设计和产生更大范围的结构变异。在此,我们将讨论这些工具及其应用实例,并强调要充分利用这些工具的潜力需要克服的现有挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering structural variants to interrogate genome function

Engineering structural variants to interrogate genome function

Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信