Tian Lu, Mengdi Wang, Wei Zhou, Qi Ni, Yuanlei Yue, Wei Wang, Yingchao Shi, Zeyuan Liu, Changlin Li, Bei Hong, Xin Zhou, Suijuan Zhong, Kaikai Wang, Bo Zeng, Jun Zhang, Wei Wang, Xu Zhang, Qian Wu, Xiaoqun Wang
{"title":"解码发育中人类感觉神经元的转录特征和类器官模型","authors":"Tian Lu, Mengdi Wang, Wei Zhou, Qi Ni, Yuanlei Yue, Wei Wang, Yingchao Shi, Zeyuan Liu, Changlin Li, Bei Hong, Xin Zhou, Suijuan Zhong, Kaikai Wang, Bo Zeng, Jun Zhang, Wei Wang, Xu Zhang, Qian Wu, Xiaoqun Wang","doi":"10.1016/j.cell.2024.10.023","DOIUrl":null,"url":null,"abstract":"Dorsal root ganglia (DRGs) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) units. Additionally, we identify a human-enriched <em>NTRK3</em><sup>+</sup>/<em>DCC</em><sup>+</sup> nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways <em>in vivo</em>, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"41 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding transcriptional identity in developing human sensory neurons and organoid modeling\",\"authors\":\"Tian Lu, Mengdi Wang, Wei Zhou, Qi Ni, Yuanlei Yue, Wei Wang, Yingchao Shi, Zeyuan Liu, Changlin Li, Bei Hong, Xin Zhou, Suijuan Zhong, Kaikai Wang, Bo Zeng, Jun Zhang, Wei Wang, Xu Zhang, Qian Wu, Xiaoqun Wang\",\"doi\":\"10.1016/j.cell.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dorsal root ganglia (DRGs) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) units. Additionally, we identify a human-enriched <em>NTRK3</em><sup>+</sup>/<em>DCC</em><sup>+</sup> nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways <em>in vivo</em>, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.10.023\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding transcriptional identity in developing human sensory neurons and organoid modeling
Dorsal root ganglia (DRGs) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) units. Additionally, we identify a human-enriched NTRK3+/DCC+ nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways in vivo, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.