Qi Liu, Chengyang Li, Tingting Wang, Peng Sun, Jia Wang, Yongjie Xi, Guang Gao, Mengnan Nie, Li Huang, Guofeng Wang, Zelun Zhao, Zhiwei Huang, Fuwei Li
{"title":"通过光催化和热催化耦合将二氧化碳和生物呋喃转化为可降解的塑料单体","authors":"Qi Liu, Chengyang Li, Tingting Wang, Peng Sun, Jia Wang, Yongjie Xi, Guang Gao, Mengnan Nie, Li Huang, Guofeng Wang, Zelun Zhao, Zhiwei Huang, Fuwei Li","doi":"10.1016/j.cej.2024.157519","DOIUrl":null,"url":null,"abstract":"Coupling of CO<sub>2</sub> with biomass-derived molecules into degradable plastic monomer provides a promising strategy to address the increasing problems of carbon recycle and carbon neutrality. Herein, we develop a sustainable route to produce 6-hydroxycaproate (6-HMC) by coupling photocatalytic carboxylation of biomass-derived furfuryl alcohol with CO<sub>2</sub> to 2-furanacetic acid (FA), and the thermocatalytic hydrogenolysis of methyl 2-tetrahydrofuranyl acetate (MTFA) derived from FA, wherein Pd/CeO<sub>2</sub> exhibit the highest productivity of 6-HMC (505 mmol<sub>6-HMC</sub> mmol<sup>-1</sup><sub>metal</sub> h<sup>−1</sup>), much higher than its counterparts of precious- and non-precious-metal catalysts. Moreover, Pd/CeO<sub>2</sub> also presents good stability for 6 recycles without remarkable decrease in 6-HMC yield. Systematic experiments and computational studies suggest that higher concentration of oxygen vacancies and strong metal-support interactions account for enhanced catalytic performance of Pd/CeO<sub>2</sub>. The work employs CO<sub>2</sub> and lignocellulosic-derived platform molecule as feedstocks to produce valuable degradable plastic monomer, providing a promising route to access pure-CO<sub>2</sub> originated high-carbon oxygen-containing compounds.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"42 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling CO2 and bio-derived furan into degradable plastic monomer via coupling of photocatalysis and thermocatalysis\",\"authors\":\"Qi Liu, Chengyang Li, Tingting Wang, Peng Sun, Jia Wang, Yongjie Xi, Guang Gao, Mengnan Nie, Li Huang, Guofeng Wang, Zelun Zhao, Zhiwei Huang, Fuwei Li\",\"doi\":\"10.1016/j.cej.2024.157519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupling of CO<sub>2</sub> with biomass-derived molecules into degradable plastic monomer provides a promising strategy to address the increasing problems of carbon recycle and carbon neutrality. Herein, we develop a sustainable route to produce 6-hydroxycaproate (6-HMC) by coupling photocatalytic carboxylation of biomass-derived furfuryl alcohol with CO<sub>2</sub> to 2-furanacetic acid (FA), and the thermocatalytic hydrogenolysis of methyl 2-tetrahydrofuranyl acetate (MTFA) derived from FA, wherein Pd/CeO<sub>2</sub> exhibit the highest productivity of 6-HMC (505 mmol<sub>6-HMC</sub> mmol<sup>-1</sup><sub>metal</sub> h<sup>−1</sup>), much higher than its counterparts of precious- and non-precious-metal catalysts. Moreover, Pd/CeO<sub>2</sub> also presents good stability for 6 recycles without remarkable decrease in 6-HMC yield. Systematic experiments and computational studies suggest that higher concentration of oxygen vacancies and strong metal-support interactions account for enhanced catalytic performance of Pd/CeO<sub>2</sub>. The work employs CO<sub>2</sub> and lignocellulosic-derived platform molecule as feedstocks to produce valuable degradable plastic monomer, providing a promising route to access pure-CO<sub>2</sub> originated high-carbon oxygen-containing compounds.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157519\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157519","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Upcycling CO2 and bio-derived furan into degradable plastic monomer via coupling of photocatalysis and thermocatalysis
Coupling of CO2 with biomass-derived molecules into degradable plastic monomer provides a promising strategy to address the increasing problems of carbon recycle and carbon neutrality. Herein, we develop a sustainable route to produce 6-hydroxycaproate (6-HMC) by coupling photocatalytic carboxylation of biomass-derived furfuryl alcohol with CO2 to 2-furanacetic acid (FA), and the thermocatalytic hydrogenolysis of methyl 2-tetrahydrofuranyl acetate (MTFA) derived from FA, wherein Pd/CeO2 exhibit the highest productivity of 6-HMC (505 mmol6-HMC mmol-1metal h−1), much higher than its counterparts of precious- and non-precious-metal catalysts. Moreover, Pd/CeO2 also presents good stability for 6 recycles without remarkable decrease in 6-HMC yield. Systematic experiments and computational studies suggest that higher concentration of oxygen vacancies and strong metal-support interactions account for enhanced catalytic performance of Pd/CeO2. The work employs CO2 and lignocellulosic-derived platform molecule as feedstocks to produce valuable degradable plastic monomer, providing a promising route to access pure-CO2 originated high-carbon oxygen-containing compounds.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.