{"title":"在热激子发射器中引入富电子噻吩桥,实现低开启电压的高效非掺杂近红外有机发光二极管","authors":"Ruming Jiang, Zhangshan Liu, Yuanyuan Han, Jiawei Long, Ting Guo, Xia Lan, Mingguang Yu, Ting Fan, Haijun Ma, Yen Wei, Ben Zhong Tang, Zujin Zhao","doi":"10.1016/j.cej.2024.157575","DOIUrl":null,"url":null,"abstract":"The development of near-infrared (NIR) luminescent materials featuring high photoluminescence quantum yield (Φ<sub>PL</sub>) at aggregated state is of great significance for achieving highly efficient non-doped organic light-emitting diodes (OLEDs) but remains formidable challenging. Herein, a design strategy of introducing electron-rich thiophene groups between electron acceptor and donor is proposed for efficient NIR luminescent materials, and a tailored D-π-A-π-D type emitter, namely, 4,4′-(benzo[c]<span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[5]</span></span>thiadiazole-4,7-diylbis(thiophene-5,2-diyl))bis(N,N-diphenylaniline) (TPATBT), is designed and prepared. The photophysical investigation and density functional theory analysis disclose that TPATBT is a hot exciton emitter feature with hybridized local and charge-transfer state. Additionally, TPATBT demonstrates aggregation-induced emission characteristic, prefers high thermal stability, and exhibits a strong emission at 692 nm with a decent Φ<sub>PL</sub> of 20 % in the neat film. The non-doped device based on TPATBT neat film presents a maximum external quantum efficiency (η<sub>ext,max</sub>) of 1.22 % with electroluminescence peak at 718n m. Moreover, we first try to use interlayer sensitization to sensitize non-doped devices, which achieves better η<sub>ext,max</sub> of 1.34 % with low turn-on voltage of 3.2 V. The proposed molecular design strategy in this work is promising for exploring robust NIR luminescent materials for high-performance OLEDs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"10 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing electron-rich thiophene bridges in hot exciton emitter for efficient non-Doped near-infrared OLEDs with low turn-on voltages\",\"authors\":\"Ruming Jiang, Zhangshan Liu, Yuanyuan Han, Jiawei Long, Ting Guo, Xia Lan, Mingguang Yu, Ting Fan, Haijun Ma, Yen Wei, Ben Zhong Tang, Zujin Zhao\",\"doi\":\"10.1016/j.cej.2024.157575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of near-infrared (NIR) luminescent materials featuring high photoluminescence quantum yield (Φ<sub>PL</sub>) at aggregated state is of great significance for achieving highly efficient non-doped organic light-emitting diodes (OLEDs) but remains formidable challenging. Herein, a design strategy of introducing electron-rich thiophene groups between electron acceptor and donor is proposed for efficient NIR luminescent materials, and a tailored D-π-A-π-D type emitter, namely, 4,4′-(benzo[c]<span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[5]</span></span>thiadiazole-4,7-diylbis(thiophene-5,2-diyl))bis(N,N-diphenylaniline) (TPATBT), is designed and prepared. The photophysical investigation and density functional theory analysis disclose that TPATBT is a hot exciton emitter feature with hybridized local and charge-transfer state. Additionally, TPATBT demonstrates aggregation-induced emission characteristic, prefers high thermal stability, and exhibits a strong emission at 692 nm with a decent Φ<sub>PL</sub> of 20 % in the neat film. The non-doped device based on TPATBT neat film presents a maximum external quantum efficiency (η<sub>ext,max</sub>) of 1.22 % with electroluminescence peak at 718n m. Moreover, we first try to use interlayer sensitization to sensitize non-doped devices, which achieves better η<sub>ext,max</sub> of 1.34 % with low turn-on voltage of 3.2 V. The proposed molecular design strategy in this work is promising for exploring robust NIR luminescent materials for high-performance OLEDs.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157575\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157575","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Introducing electron-rich thiophene bridges in hot exciton emitter for efficient non-Doped near-infrared OLEDs with low turn-on voltages
The development of near-infrared (NIR) luminescent materials featuring high photoluminescence quantum yield (ΦPL) at aggregated state is of great significance for achieving highly efficient non-doped organic light-emitting diodes (OLEDs) but remains formidable challenging. Herein, a design strategy of introducing electron-rich thiophene groups between electron acceptor and donor is proposed for efficient NIR luminescent materials, and a tailored D-π-A-π-D type emitter, namely, 4,4′-(benzo[c][1], [2], [5]thiadiazole-4,7-diylbis(thiophene-5,2-diyl))bis(N,N-diphenylaniline) (TPATBT), is designed and prepared. The photophysical investigation and density functional theory analysis disclose that TPATBT is a hot exciton emitter feature with hybridized local and charge-transfer state. Additionally, TPATBT demonstrates aggregation-induced emission characteristic, prefers high thermal stability, and exhibits a strong emission at 692 nm with a decent ΦPL of 20 % in the neat film. The non-doped device based on TPATBT neat film presents a maximum external quantum efficiency (ηext,max) of 1.22 % with electroluminescence peak at 718n m. Moreover, we first try to use interlayer sensitization to sensitize non-doped devices, which achieves better ηext,max of 1.34 % with low turn-on voltage of 3.2 V. The proposed molecular design strategy in this work is promising for exploring robust NIR luminescent materials for high-performance OLEDs.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.