{"title":"利用 O2 将 CH4 选择性氧化为 CH3OH 或 CH3CO2H 的定制孔隙封闭型单位铁(III)催化剂","authors":"Manav Chauhan, Bharti Rana, Poorvi Gupta, Rahul Kalita, Chhaya Thadhani, Kuntal Manna","doi":"10.1038/s41467-024-54101-8","DOIUrl":null,"url":null,"abstract":"<p>Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO<sub>2</sub> and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O<sub>2</sub>. The active-site isolation of monomeric Fe<sup>III</sup>(OH)<sub>2</sub> species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of <span>\\(38,592\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{\\rm{OH}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}\\)</span> and <span>\\(81,043\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{{\\rm{CO}}}}_{2}{{\\rm{H}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}\\)</span>, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a Fe<sup>III</sup>-Fe<sup>I</sup>-Fe<sup>III</sup> catalytic cycle, whereas CH<sub>3</sub>CO<sub>2</sub>H is produced via hydrocarboxylation of in-situ generated CH<sub>3</sub>OH with CO<sub>2</sub> and H<sub>2</sub>, and direct CH<sub>4</sub> carboxylation with CO<sub>2</sub>.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2\",\"authors\":\"Manav Chauhan, Bharti Rana, Poorvi Gupta, Rahul Kalita, Chhaya Thadhani, Kuntal Manna\",\"doi\":\"10.1038/s41467-024-54101-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO<sub>2</sub> and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O<sub>2</sub>. The active-site isolation of monomeric Fe<sup>III</sup>(OH)<sub>2</sub> species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of <span>\\\\(38,592\\\\,\\\\upmu {{{\\\\rm{mol}}}}_{{{{\\\\rm{CH}}}}_{3}{{\\\\rm{OH}}}}{{{{\\\\rm{g}}}}_{{{\\\\rm{Fe}}}}}^{-1}{{{\\\\rm{h}}}}^{-1}\\\\)</span> and <span>\\\\(81,043\\\\,\\\\upmu {{{\\\\rm{mol}}}}_{{{{\\\\rm{CH}}}}_{3}{{{\\\\rm{CO}}}}_{2}{{\\\\rm{H}}}}{{{{\\\\rm{g}}}}_{{{\\\\rm{Fe}}}}}^{-1}{{{\\\\rm{h}}}}^{-1}\\\\)</span>, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a Fe<sup>III</sup>-Fe<sup>I</sup>-Fe<sup>III</sup> catalytic cycle, whereas CH<sub>3</sub>CO<sub>2</sub>H is produced via hydrocarboxylation of in-situ generated CH<sub>3</sub>OH with CO<sub>2</sub> and H<sub>2</sub>, and direct CH<sub>4</sub> carboxylation with CO<sub>2</sub>.</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54101-8\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54101-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
由于 C-H 键解离能高、容易过氧化成 CO 和 CO2 以及 C-H 活化/C-C 偶联的复杂性,在温和条件下将甲烷直接氧化成醇和醋酸等有价值的含氧化合物是一项重大挑战。在这项工作中,我们开发了一种固定在金属有机框架(MOF)中的多功能二羟基铁催化剂,用于在不同的反应条件下使用氧气将甲烷选择性地氧化成甲醇或乙酸。单体 FeⅢ(OH)2 物种在 MOF 节点上的活性位点分离、它们在多孔框架内的限制以及它们的缺电子性质促进了化学选择性 C-H 氧化,生成甲醇或醋酸,其生产率高达 38、592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\) and \(81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\), respectively.实验和理论计算表明,甲醇是通过 FeIII-FeI-FeIII 催化循环生成的,而 CH3CO2H 则是通过原位生成的 CH3OH 与 CO2 和 H2 发生羧化反应以及 CH4 与 CO2 直接发生羧化反应生成的。
Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2
Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of \(38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\) and \(81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}^{-1}{{{\rm{h}}}}^{-1}\), respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.