利用增殖降解剂调节微环境的敷料促进糖尿病伤口愈合

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lianghui Cheng, Zhiyong Zhuang, Mingming Yin, Yuan Lu, Sujuan Liu, Minle Zhan, Liyuan Zhao, Zhenyan He, Fanling Meng, Sidan Tian, Liang Luo
{"title":"利用增殖降解剂调节微环境的敷料促进糖尿病伤口愈合","authors":"Lianghui Cheng, Zhiyong Zhuang, Mingming Yin, Yuan Lu, Sujuan Liu, Minle Zhan, Liyuan Zhao, Zhenyan He, Fanling Meng, Sidan Tian, Liang Luo","doi":"10.1038/s41467-024-54075-7","DOIUrl":null,"url":null,"abstract":"<p>Diabetic wounds are usually entangled in a disorganized and self-perpetuating microenvironment and accompanied by a prolonged delay in tissue repair. Sustained and coordinated microenvironment regulation and tissue regeneration are key to the healing process of diabetic wounds, yet they continue to pose a formidable challenge. Here we report a rational double-layered dressing design based on chitosan and a degradable conjugated polymer polydiacetylene, poly(deca-4,6-diynedioic acid) (PDDA), that can meet this intricate requirement. With an alternating ene-yne backbone, PDDA degrades when reacting with various types of reactive oxygen species (ROS), and more importantly, generates proliferative succinic acid as a major degradant. Inheriting from PDDA, the developed PDDA-chitosan double layer dressing (PCD) can eliminate ROS in the microenvironment of diabetic wounds, alleviate inflammation, and downregulate gene expression of innate immune receptors. PCD degradation also triggers simultaneous release of succinic acid in a sustainable manner, enabling long-term promotion on tissue regeneration. We have validated the biocompatibility and excellent performance of PCD in expediting the wound healing on both diabetic mouse and porcine models, which underscores the significant translational potential of this microenvironment-modulating, growth-promoting wound dressing in diabetic wounds care.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds\",\"authors\":\"Lianghui Cheng, Zhiyong Zhuang, Mingming Yin, Yuan Lu, Sujuan Liu, Minle Zhan, Liyuan Zhao, Zhenyan He, Fanling Meng, Sidan Tian, Liang Luo\",\"doi\":\"10.1038/s41467-024-54075-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetic wounds are usually entangled in a disorganized and self-perpetuating microenvironment and accompanied by a prolonged delay in tissue repair. Sustained and coordinated microenvironment regulation and tissue regeneration are key to the healing process of diabetic wounds, yet they continue to pose a formidable challenge. Here we report a rational double-layered dressing design based on chitosan and a degradable conjugated polymer polydiacetylene, poly(deca-4,6-diynedioic acid) (PDDA), that can meet this intricate requirement. With an alternating ene-yne backbone, PDDA degrades when reacting with various types of reactive oxygen species (ROS), and more importantly, generates proliferative succinic acid as a major degradant. Inheriting from PDDA, the developed PDDA-chitosan double layer dressing (PCD) can eliminate ROS in the microenvironment of diabetic wounds, alleviate inflammation, and downregulate gene expression of innate immune receptors. PCD degradation also triggers simultaneous release of succinic acid in a sustainable manner, enabling long-term promotion on tissue regeneration. We have validated the biocompatibility and excellent performance of PCD in expediting the wound healing on both diabetic mouse and porcine models, which underscores the significant translational potential of this microenvironment-modulating, growth-promoting wound dressing in diabetic wounds care.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54075-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54075-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病伤口通常与混乱和自我延续的微环境纠缠在一起,并伴随着组织修复的长期延迟。持续、协调的微环境调节和组织再生是糖尿病伤口愈合过程的关键,但这仍然是一项艰巨的挑战。在此,我们报告了一种基于壳聚糖和可降解共轭聚合物聚二乙烯--聚(癸-4,6-二炔二酸)(PDDA)的合理双层敷料设计,它能满足这一复杂的要求。PDDA 具有交替的烯-炔骨架,在与各种活性氧(ROS)反应时会发生降解,更重要的是,PDDA 的主要降解物是琥珀酸。所开发的 PDDA-壳聚糖双层敷料(PCD)继承了 PDDA 的特性,可以消除糖尿病伤口微环境中的 ROS,缓解炎症,并下调先天性免疫受体的基因表达。PCD 降解还能以可持续的方式同时释放琥珀酸,从而长期促进组织再生。我们已经在糖尿病小鼠和猪模型上验证了 PCD 的生物相容性和在加速伤口愈合方面的卓越性能,这凸显了这种可调节微环境、促进生长的伤口敷料在糖尿病伤口护理方面的巨大转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds

A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds

Diabetic wounds are usually entangled in a disorganized and self-perpetuating microenvironment and accompanied by a prolonged delay in tissue repair. Sustained and coordinated microenvironment regulation and tissue regeneration are key to the healing process of diabetic wounds, yet they continue to pose a formidable challenge. Here we report a rational double-layered dressing design based on chitosan and a degradable conjugated polymer polydiacetylene, poly(deca-4,6-diynedioic acid) (PDDA), that can meet this intricate requirement. With an alternating ene-yne backbone, PDDA degrades when reacting with various types of reactive oxygen species (ROS), and more importantly, generates proliferative succinic acid as a major degradant. Inheriting from PDDA, the developed PDDA-chitosan double layer dressing (PCD) can eliminate ROS in the microenvironment of diabetic wounds, alleviate inflammation, and downregulate gene expression of innate immune receptors. PCD degradation also triggers simultaneous release of succinic acid in a sustainable manner, enabling long-term promotion on tissue regeneration. We have validated the biocompatibility and excellent performance of PCD in expediting the wound healing on both diabetic mouse and porcine models, which underscores the significant translational potential of this microenvironment-modulating, growth-promoting wound dressing in diabetic wounds care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信