Dolachai Boniface, Arthur V. Straube, Pietro Tierno
{"title":"具有活性可调前序动力学的光催化磁性显微镜","authors":"Dolachai Boniface, Arthur V. Straube, Pietro Tierno","doi":"10.1021/acs.nanolett.4c03386","DOIUrl":null,"url":null,"abstract":"Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Magnetic Microgyroscopes with Activity-Tunable Precessional Dynamics\",\"authors\":\"Dolachai Boniface, Arthur V. Straube, Pietro Tierno\",\"doi\":\"10.1021/acs.nanolett.4c03386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03386\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03386","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocatalytic Magnetic Microgyroscopes with Activity-Tunable Precessional Dynamics
Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.