水热温度对基于 MnO2 的超级电容器的结构和电化学特性的影响

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Eka Nurfani, Paulus Fau, Nur I. Khamidy, Resti Marlina
{"title":"水热温度对基于 MnO2 的超级电容器的结构和电化学特性的影响","authors":"Eka Nurfani,&nbsp;Paulus Fau,&nbsp;Nur I. Khamidy,&nbsp;Resti Marlina","doi":"10.1007/s10854-024-13820-w","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrothermally synthesized manganese dioxide (MnO<sub>2</sub>) has attracted significant attention in supercapacitor applications due to its exceptional electrochemical properties. This research systematically explores the influence of hydrothermal temperatures of 105 °C (M1), 120 °C (M2), and 150 °C (M3) on the structural and electrochemical characteristics of MnO<sub>2</sub>-based supercapacitors. From field effect scanning electron microscopy (FESEM) images, the average diameter of MnO<sub>2</sub> nanorods is 139 ± 3 nm, 140 ± 5 nm, and 156 ± 3 nm for M1, M2, and M3. The crystalline quality of MnO<sub>2</sub> increases by increasing the hydrothermal temperature (M3 sample). Shifting the Raman peak from 637 to 654 cm<sup>−1</sup> is observed due to the enhancement in crystallinity and nanorod size in the M3 sample. Higher surface area for smaller nanorods (M1) is also confirmed by the BET (Brunauer–Emmett–Teller) technique. At the scan rate of 10 mV/s, the specific capacitance obtained is 142 (M1), 135 (M2), and 131 (M3) F/g. By elucidating the intricate relationship between hydrothermal temperature and the resultant MnO<sub>2</sub> properties, this study provides valuable insights for optimizing the synthesis conditions to enhance the performance of MnO<sub>2</sub>-based supercapacitors.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-13820-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of hydrothermal temperature on the structural and electrochemical properties of MnO2-based supercapacitors\",\"authors\":\"Eka Nurfani,&nbsp;Paulus Fau,&nbsp;Nur I. Khamidy,&nbsp;Resti Marlina\",\"doi\":\"10.1007/s10854-024-13820-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrothermally synthesized manganese dioxide (MnO<sub>2</sub>) has attracted significant attention in supercapacitor applications due to its exceptional electrochemical properties. This research systematically explores the influence of hydrothermal temperatures of 105 °C (M1), 120 °C (M2), and 150 °C (M3) on the structural and electrochemical characteristics of MnO<sub>2</sub>-based supercapacitors. From field effect scanning electron microscopy (FESEM) images, the average diameter of MnO<sub>2</sub> nanorods is 139 ± 3 nm, 140 ± 5 nm, and 156 ± 3 nm for M1, M2, and M3. The crystalline quality of MnO<sub>2</sub> increases by increasing the hydrothermal temperature (M3 sample). Shifting the Raman peak from 637 to 654 cm<sup>−1</sup> is observed due to the enhancement in crystallinity and nanorod size in the M3 sample. Higher surface area for smaller nanorods (M1) is also confirmed by the BET (Brunauer–Emmett–Teller) technique. At the scan rate of 10 mV/s, the specific capacitance obtained is 142 (M1), 135 (M2), and 131 (M3) F/g. By elucidating the intricate relationship between hydrothermal temperature and the resultant MnO<sub>2</sub> properties, this study provides valuable insights for optimizing the synthesis conditions to enhance the performance of MnO<sub>2</sub>-based supercapacitors.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"35 32\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-024-13820-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13820-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13820-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

水热合成的二氧化锰(MnO2)因其优异的电化学特性在超级电容器应用中备受关注。本研究系统地探讨了 105 ℃(M1)、120 ℃(M2)和 150 ℃(M3)水热温度对基于 MnO2 的超级电容器的结构和电化学特性的影响。从场效应扫描电子显微镜(FESEM)图像来看,M1、M2 和 M3 的 MnO2 纳米棒平均直径分别为 139 ± 3 nm、140 ± 5 nm 和 156 ± 3 nm。MnO2 的结晶质量随着水热温度的升高而增加(M3 样品)。由于 M3 样品的结晶度和纳米棒尺寸增大,拉曼峰从 637 cm-1 移至 654 cm-1。较小纳米棒(M1)的较高表面积也通过 BET(Brunauer-Emmett-Teller)技术得到了证实。在 10 mV/s 的扫描速率下,得到的比电容分别为 142(M1)、135(M2)和 131(M3)F/g。通过阐明水热温度与 MnO2 性能之间的复杂关系,本研究为优化合成条件以提高基于 MnO2 的超级电容器的性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of hydrothermal temperature on the structural and electrochemical properties of MnO2-based supercapacitors

Hydrothermally synthesized manganese dioxide (MnO2) has attracted significant attention in supercapacitor applications due to its exceptional electrochemical properties. This research systematically explores the influence of hydrothermal temperatures of 105 °C (M1), 120 °C (M2), and 150 °C (M3) on the structural and electrochemical characteristics of MnO2-based supercapacitors. From field effect scanning electron microscopy (FESEM) images, the average diameter of MnO2 nanorods is 139 ± 3 nm, 140 ± 5 nm, and 156 ± 3 nm for M1, M2, and M3. The crystalline quality of MnO2 increases by increasing the hydrothermal temperature (M3 sample). Shifting the Raman peak from 637 to 654 cm−1 is observed due to the enhancement in crystallinity and nanorod size in the M3 sample. Higher surface area for smaller nanorods (M1) is also confirmed by the BET (Brunauer–Emmett–Teller) technique. At the scan rate of 10 mV/s, the specific capacitance obtained is 142 (M1), 135 (M2), and 131 (M3) F/g. By elucidating the intricate relationship between hydrothermal temperature and the resultant MnO2 properties, this study provides valuable insights for optimizing the synthesis conditions to enhance the performance of MnO2-based supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信