关于换元的一些奇异值不等式

IF 0.8 Q2 MATHEMATICS
Maninderjit Kaur, Isha Garg
{"title":"关于换元的一些奇异值不等式","authors":"Maninderjit Kaur,&nbsp;Isha Garg","doi":"10.1007/s43036-024-00393-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, singular value and norm inequalities for expressions of the form <span>\\(SXT+Y\\)</span> are established. It is shown that if <span>\\(S,T,X,Y \\in \\mathcal {B(H)}\\)</span> such that <i>X</i>, <i>Y</i> are compact operators, then </p><div><div><span>$$\\begin{aligned} \\sigma _{j}\\left( SXT+Y\\right) \\le \\left( \\Vert S\\Vert \\Vert T\\Vert + \\Vert Y\\Vert \\right) \\sigma _j( X\\oplus I).\\end{aligned}$$</span></div></div><p>Additionally, we explore several applications of this inequality, which provide a broader framework for analysis and yield more nuanced insights. For <span>\\(X, Y\\in \\mathcal {B(H)}\\)</span> one notable application is the following inequality, </p><div><div><span>$$\\begin{aligned} \\sigma _{j}\\left( \\mid X-Y\\mid ^{2}-2 \\left( \\mid X \\mid ^{2}+\\mid Y \\mid ^{2} \\right) \\right) \\le \\left( 1+\\mid \\mid Y\\mid \\mid \\right) ^{2} \\sigma _{j}( \\mid X \\mid ^{2}\\oplus I). \\end{aligned}$$</span></div></div><p>These results extend existing inequalities and offer new perspectives in operator theory.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some singular value inequalities on commutators\",\"authors\":\"Maninderjit Kaur,&nbsp;Isha Garg\",\"doi\":\"10.1007/s43036-024-00393-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, singular value and norm inequalities for expressions of the form <span>\\\\(SXT+Y\\\\)</span> are established. It is shown that if <span>\\\\(S,T,X,Y \\\\in \\\\mathcal {B(H)}\\\\)</span> such that <i>X</i>, <i>Y</i> are compact operators, then </p><div><div><span>$$\\\\begin{aligned} \\\\sigma _{j}\\\\left( SXT+Y\\\\right) \\\\le \\\\left( \\\\Vert S\\\\Vert \\\\Vert T\\\\Vert + \\\\Vert Y\\\\Vert \\\\right) \\\\sigma _j( X\\\\oplus I).\\\\end{aligned}$$</span></div></div><p>Additionally, we explore several applications of this inequality, which provide a broader framework for analysis and yield more nuanced insights. For <span>\\\\(X, Y\\\\in \\\\mathcal {B(H)}\\\\)</span> one notable application is the following inequality, </p><div><div><span>$$\\\\begin{aligned} \\\\sigma _{j}\\\\left( \\\\mid X-Y\\\\mid ^{2}-2 \\\\left( \\\\mid X \\\\mid ^{2}+\\\\mid Y \\\\mid ^{2} \\\\right) \\\\right) \\\\le \\\\left( 1+\\\\mid \\\\mid Y\\\\mid \\\\mid \\\\right) ^{2} \\\\sigma _{j}( \\\\mid X \\\\mid ^{2}\\\\oplus I). \\\\end{aligned}$$</span></div></div><p>These results extend existing inequalities and offer new perspectives in operator theory.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00393-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00393-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了 \(SXT+Y\) 形式表达式的奇异值和规范不等式。研究表明,如果 (S,T,X,Y in \mathcal {B(H)}\ )使得 X、Y 是紧凑的算子,那么 $$\begin{aligned} ($$begin{aligned}开始{aligned}。\sigma _{j}\left( SXT+Y\right) \le \left( \Vert S\Vert \Vert T\Vert + \Vert Y\Vert \right) \sigma _j( X\oplus I).\end{aligned}$另外,我们还探索了这个不等式的几个应用,它们为分析提供了更广泛的框架,并产生了更细微的见解。对于 \(X, Y\in \mathcal {B(H)}\) 来说,一个值得注意的应用是下面的不等式,$$\begin{aligned}(开始{aligned})\le \left( 1+\mid Y\mid \mid \right)^{2}。\sigma _{j}( \mid X \mid ^{2}\oplus I).\end{aligned}$$这些结果扩展了现有的不等式,并为算子理论提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some singular value inequalities on commutators

In this study, singular value and norm inequalities for expressions of the form \(SXT+Y\) are established. It is shown that if \(S,T,X,Y \in \mathcal {B(H)}\) such that X, Y are compact operators, then

$$\begin{aligned} \sigma _{j}\left( SXT+Y\right) \le \left( \Vert S\Vert \Vert T\Vert + \Vert Y\Vert \right) \sigma _j( X\oplus I).\end{aligned}$$

Additionally, we explore several applications of this inequality, which provide a broader framework for analysis and yield more nuanced insights. For \(X, Y\in \mathcal {B(H)}\) one notable application is the following inequality,

$$\begin{aligned} \sigma _{j}\left( \mid X-Y\mid ^{2}-2 \left( \mid X \mid ^{2}+\mid Y \mid ^{2} \right) \right) \le \left( 1+\mid \mid Y\mid \mid \right) ^{2} \sigma _{j}( \mid X \mid ^{2}\oplus I). \end{aligned}$$

These results extend existing inequalities and offer new perspectives in operator theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信