João Barata, Paul Caucal, Alba Soto-Ontoso, Robert Szafron
{"title":"推进对重离子碰撞中能量相关器的理解","authors":"João Barata, Paul Caucal, Alba Soto-Ontoso, Robert Szafron","doi":"10.1007/JHEP11(2024)060","DOIUrl":null,"url":null,"abstract":"<p>We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a <i>diagrammatic</i> approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the <span>\\( \\mathcal{O} \\)</span>(<i>α</i><sub><i>s</i></sub>) expansion of the in-medium EEC for a <i>γ</i> → <span>\\( q\\overline{q} \\)</span> splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to <span>\\( \\mathcal{O} \\)</span>(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)060.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancing the understanding of energy-energy correlators in heavy-ion collisions\",\"authors\":\"João Barata, Paul Caucal, Alba Soto-Ontoso, Robert Szafron\",\"doi\":\"10.1007/JHEP11(2024)060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a <i>diagrammatic</i> approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the <span>\\\\( \\\\mathcal{O} \\\\)</span>(<i>α</i><sub><i>s</i></sub>) expansion of the in-medium EEC for a <i>γ</i> → <span>\\\\( q\\\\overline{q} \\\\)</span> splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to <span>\\\\( \\\\mathcal{O} \\\\)</span>(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)060.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)060\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)060","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Advancing the understanding of energy-energy correlators in heavy-ion collisions
We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a diagrammatic approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the \( \mathcal{O} \)(αs) expansion of the in-medium EEC for a γ → \( q\overline{q} \) splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to \( \mathcal{O} \)(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).