具有低渗阈值和可调负介电常数的碳纳米管/聚偏氟乙烯柔性复合材料

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zuxiang Mu, Yinuo Sun, Zhaocun Shen, Gemeng Liang, Jinshuo Zou, Peitao Xie
{"title":"具有低渗阈值和可调负介电常数的碳纳米管/聚偏氟乙烯柔性复合材料","authors":"Zuxiang Mu,&nbsp;Yinuo Sun,&nbsp;Zhaocun Shen,&nbsp;Gemeng Liang,&nbsp;Jinshuo Zou,&nbsp;Peitao Xie","doi":"10.1007/s42114-024-01049-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity\",\"authors\":\"Zuxiang Mu,&nbsp;Yinuo Sun,&nbsp;Zhaocun Shen,&nbsp;Gemeng Liang,&nbsp;Jinshuo Zou,&nbsp;Peitao Xie\",\"doi\":\"10.1007/s42114-024-01049-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01049-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01049-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在材料科学、电磁学和光学等交叉学科领域,负介电常数作为一种独特的物理特性,正逐渐引起学术界和工业界的广泛关注。在多元化发展的今天,负介电常数材料对负介电常数的数值和柔性提出了严格的要求。本研究采用浇铸法制备了一种负介电常数渗流阈值较低的柔性碳纳米管(CNTs)/聚偏氟乙烯(PVDF)复合薄膜,其渗流阈值仅为 9 wt%。通过改变 CNTs 的含量,可以调整正介电常数和负介电常数响应的强度。研究发现,其传导机制包括跳跃传导和类金属传导。值得注意的是,当 CNTs 含量为 11 wt% 时,在整个频率范围内都观察到负介电常数,呈现出 Drude-Lorentz 型色散。碳纳米管含量较低的复合材料主要在低频出现介电损耗,而碳纳米管含量较高的复合材料则在整个频率范围内出现介电损耗。这项工作展示了一种控制负介电常数的经济高效且简单直接的方法,有望应用于电子设备和电磁屏蔽领域。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity

Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity

In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信