过二亚胺功能化纳米二氧化硅:用于选择性探测和修复 4-硝基邻苯二酚、Ru3+ 和 Cu2+ 并进行生物传感应用的绿色发射材料†。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sanjay Yadav, Nishu Choudhary, Avinash T. Vasave, Vasavdutta Sonpal and Alok Ranjan Paital
{"title":"过二亚胺功能化纳米二氧化硅:用于选择性探测和修复 4-硝基邻苯二酚、Ru3+ 和 Cu2+ 并进行生物传感应用的绿色发射材料†。","authors":"Sanjay Yadav, Nishu Choudhary, Avinash T. Vasave, Vasavdutta Sonpal and Alok Ranjan Paital","doi":"10.1039/D4MA00862F","DOIUrl":null,"url":null,"abstract":"<p >Hybrid materials having dual applications in environmental monitoring and remediation are vital for mitigating pollution and economic benefits. In this regard, mesoporous silica is extensively studied compared to nano-silica materials due to challenges in controlling particle size morphology, and aggregation. In this work, a hybrid material was developed using nano-silica as a substrate and perylene diimide derivative as a fluorophore for simultaneous detection and adsorption of specific toxic analytes. A microemulsion method was applied for the synthesis of nano-silica with spherical to discoid morphology providing a high surface area. The surface immobilization of perylene diimide and subsequent bay-functionalization yielded the green emissive material nano-SiO<small><sub>2</sub></small>@BAPERTOL. This material selectively detects 4-nitrocatechol (4-NC) <em>via</em> dynamic fluorescence quenching (FRET), and Ru<small><sup>3+</sup></small> and Cu<small><sup>2+</sup></small> among metal cations through static fluorescence quenching, with LODs of 4.34 nM, 0.56 nM, and 0.43 nM, respectively. This material exhibits hydrogen bonding-mediated high adsorption capacity (∼775 mg g<small><sup>−1</sup></small>) towards 4-NC and coordination-driven adsorption of Ru<small><sup>3+</sup></small> and Cu<small><sup>2+</sup></small> ions (460, 566 mg g<small><sup>−1</sup></small>). Also, the biosensing potential of the material was evaluated using brine shrimp (<em>Artemia nauplii</em>). Conclusively, the material serves as a single recyclable platform for selective detection and remediation of 4-NC, Ru<small><sup>3+</sup></small>, and Cu<small><sup>2+</sup></small> ions, demonstrating superior performance and sustainability.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00862f?page=search","citationCount":"0","resultStr":"{\"title\":\"Perylene diimide functionalized nano-silica: green emissive material for selective probing and remediation of 4-nitrocatechol, Ru3+, and Cu2+ with biosensing applications†\",\"authors\":\"Sanjay Yadav, Nishu Choudhary, Avinash T. Vasave, Vasavdutta Sonpal and Alok Ranjan Paital\",\"doi\":\"10.1039/D4MA00862F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hybrid materials having dual applications in environmental monitoring and remediation are vital for mitigating pollution and economic benefits. In this regard, mesoporous silica is extensively studied compared to nano-silica materials due to challenges in controlling particle size morphology, and aggregation. In this work, a hybrid material was developed using nano-silica as a substrate and perylene diimide derivative as a fluorophore for simultaneous detection and adsorption of specific toxic analytes. A microemulsion method was applied for the synthesis of nano-silica with spherical to discoid morphology providing a high surface area. The surface immobilization of perylene diimide and subsequent bay-functionalization yielded the green emissive material nano-SiO<small><sub>2</sub></small>@BAPERTOL. This material selectively detects 4-nitrocatechol (4-NC) <em>via</em> dynamic fluorescence quenching (FRET), and Ru<small><sup>3+</sup></small> and Cu<small><sup>2+</sup></small> among metal cations through static fluorescence quenching, with LODs of 4.34 nM, 0.56 nM, and 0.43 nM, respectively. This material exhibits hydrogen bonding-mediated high adsorption capacity (∼775 mg g<small><sup>−1</sup></small>) towards 4-NC and coordination-driven adsorption of Ru<small><sup>3+</sup></small> and Cu<small><sup>2+</sup></small> ions (460, 566 mg g<small><sup>−1</sup></small>). Also, the biosensing potential of the material was evaluated using brine shrimp (<em>Artemia nauplii</em>). Conclusively, the material serves as a single recyclable platform for selective detection and remediation of 4-NC, Ru<small><sup>3+</sup></small>, and Cu<small><sup>2+</sup></small> ions, demonstrating superior performance and sustainability.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00862f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00862f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00862f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在环境监测和修复方面具有双重用途的混合材料对于减轻污染和提高经济效益至关重要。在这方面,与纳米二氧化硅材料相比,介孔二氧化硅因其在控制粒度形态和聚集方面的挑战而被广泛研究。本研究以纳米二氧化硅为基底,过二亚胺衍生物为荧光团,开发了一种混合材料,用于同时检测和吸附特定的有毒分析物。该研究采用微乳液法合成了具有球形到盘形形态的纳米二氧化硅,从而获得了高表面积。通过表面固定过二亚胺和随后的海湾功能化,得到了绿色发射材料 nano-SiO2@BAPERTOL。该材料通过动态荧光淬灭(FRET)选择性地检测 4-硝基邻苯二酚(4-NC),通过静态荧光淬灭选择性地检测金属阳离子中的 Ru3+ 和 Cu2+,检测限分别为 4.34 nM、0.56 nM 和 0.43 nM。该材料表现出氢键介导的对 4-NC 的高吸附容量(∼ 775 mg g-1),以及配位驱动的对 Ru3+ 和 Cu2+ 离子的吸附容量(460、566 mg g-1)。此外,还利用盐水虾(Artemia nauplii)评估了该材料的生物传感潜力。最终,该材料可作为单一的可回收平台,用于选择性检测和修复 4-NC、Ru3+ 和 Cu2+ 离子,表现出卓越的性能和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perylene diimide functionalized nano-silica: green emissive material for selective probing and remediation of 4-nitrocatechol, Ru3+, and Cu2+ with biosensing applications†

Perylene diimide functionalized nano-silica: green emissive material for selective probing and remediation of 4-nitrocatechol, Ru3+, and Cu2+ with biosensing applications†

Hybrid materials having dual applications in environmental monitoring and remediation are vital for mitigating pollution and economic benefits. In this regard, mesoporous silica is extensively studied compared to nano-silica materials due to challenges in controlling particle size morphology, and aggregation. In this work, a hybrid material was developed using nano-silica as a substrate and perylene diimide derivative as a fluorophore for simultaneous detection and adsorption of specific toxic analytes. A microemulsion method was applied for the synthesis of nano-silica with spherical to discoid morphology providing a high surface area. The surface immobilization of perylene diimide and subsequent bay-functionalization yielded the green emissive material nano-SiO2@BAPERTOL. This material selectively detects 4-nitrocatechol (4-NC) via dynamic fluorescence quenching (FRET), and Ru3+ and Cu2+ among metal cations through static fluorescence quenching, with LODs of 4.34 nM, 0.56 nM, and 0.43 nM, respectively. This material exhibits hydrogen bonding-mediated high adsorption capacity (∼775 mg g−1) towards 4-NC and coordination-driven adsorption of Ru3+ and Cu2+ ions (460, 566 mg g−1). Also, the biosensing potential of the material was evaluated using brine shrimp (Artemia nauplii). Conclusively, the material serves as a single recyclable platform for selective detection and remediation of 4-NC, Ru3+, and Cu2+ ions, demonstrating superior performance and sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信