BaTiO3(001)†上的铁电效应促成的显著二氧化碳分子吸附

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alexandru-Cristi Iancu, George A. Lungu, Cristian A. Tache and Cristian M. Teodorescu
{"title":"BaTiO3(001)†上的铁电效应促成的显著二氧化碳分子吸附","authors":"Alexandru-Cristi Iancu, George A. Lungu, Cristian A. Tache and Cristian M. Teodorescu","doi":"10.1039/D4MA00856A","DOIUrl":null,"url":null,"abstract":"<p >Carbon dioxide (CO<small><sub>2</sub></small>) is reversibly adsorbed and desorbed from ferroelectric (001) oriented, BaO-terminated barium titanate, as revealed in real time by high resolution and ultrafast photoelectron spectroscopy and certified by low energy electron diffraction. Desorption proceeds when the substrate is heated above its Curie temperature. The amount of CO<small><sub>2</sub></small> adsorbed is derived to be between one molecule for a surface BaO unit cell (adsorption below room temperature) and one molecule for two unit cells (adsorption above room temperature). The molecule is bound with its carbon to surface oxygen, forming a CO<small><sub>3</sub></small> structure. The BaTiO<small><sub>3</sub></small>(001) surface is unaffected by repeated cycles of adsorption–desorption. The relatively high amount of CO<small><sub>2</sub></small> adsorbed and the stability of the substrate after repeated adsorption and desorption processes promotes barium titanate as a promising candidate for decarbonization technologies.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00856a?page=search","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric-enabled significant carbon dioxide molecular adsorption on BaTiO3(001)†\",\"authors\":\"Alexandru-Cristi Iancu, George A. Lungu, Cristian A. Tache and Cristian M. Teodorescu\",\"doi\":\"10.1039/D4MA00856A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon dioxide (CO<small><sub>2</sub></small>) is reversibly adsorbed and desorbed from ferroelectric (001) oriented, BaO-terminated barium titanate, as revealed in real time by high resolution and ultrafast photoelectron spectroscopy and certified by low energy electron diffraction. Desorption proceeds when the substrate is heated above its Curie temperature. The amount of CO<small><sub>2</sub></small> adsorbed is derived to be between one molecule for a surface BaO unit cell (adsorption below room temperature) and one molecule for two unit cells (adsorption above room temperature). The molecule is bound with its carbon to surface oxygen, forming a CO<small><sub>3</sub></small> structure. The BaTiO<small><sub>3</sub></small>(001) surface is unaffected by repeated cycles of adsorption–desorption. The relatively high amount of CO<small><sub>2</sub></small> adsorbed and the stability of the substrate after repeated adsorption and desorption processes promotes barium titanate as a promising candidate for decarbonization technologies.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00856a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00856a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00856a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率和超快光电子能谱实时揭示了二氧化碳(CO2)在铁电(001)取向、BaO 端接的钛酸钡中的可逆吸附和解吸,低能电子衍射也证明了这一点。当基底被加热到居里温度以上时,就会发生解吸。据推算,一个表面 BaO 单胞吸附的二氧化碳量为一个分子(吸附温度低于室温),而两个单胞吸附的二氧化碳量为一个分子(吸附温度高于室温)。分子中的碳与表面的氧结合,形成 CO3 结构。BaTiO3(001) 表面不受反复吸附-解吸循环的影响。相对较高的二氧化碳吸附量以及基底在反复吸附和解吸过程后的稳定性,促使钛酸钡成为脱碳技术的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferroelectric-enabled significant carbon dioxide molecular adsorption on BaTiO3(001)†

Ferroelectric-enabled significant carbon dioxide molecular adsorption on BaTiO3(001)†

Carbon dioxide (CO2) is reversibly adsorbed and desorbed from ferroelectric (001) oriented, BaO-terminated barium titanate, as revealed in real time by high resolution and ultrafast photoelectron spectroscopy and certified by low energy electron diffraction. Desorption proceeds when the substrate is heated above its Curie temperature. The amount of CO2 adsorbed is derived to be between one molecule for a surface BaO unit cell (adsorption below room temperature) and one molecule for two unit cells (adsorption above room temperature). The molecule is bound with its carbon to surface oxygen, forming a CO3 structure. The BaTiO3(001) surface is unaffected by repeated cycles of adsorption–desorption. The relatively high amount of CO2 adsorbed and the stability of the substrate after repeated adsorption and desorption processes promotes barium titanate as a promising candidate for decarbonization technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信