ViTract:通过主动视觉-触觉交互实现稳健的物体形状感知

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Anirvan Dutta;Etienne Burdet;Mohsen Kaboli
{"title":"ViTract:通过主动视觉-触觉交互实现稳健的物体形状感知","authors":"Anirvan Dutta;Etienne Burdet;Mohsen Kaboli","doi":"10.1109/LRA.2024.3483037","DOIUrl":null,"url":null,"abstract":"An essential problem in robotic systems that are to be deployed in unstructured environments is the accurate and autonomous perception of the shapes of previously unseen objects. Existing methods for shape estimation or reconstruction have leveraged either visual or tactile interactive exploration techniques or have relied on comprehensive visual or tactile information acquired in an offline manner. In this letter, a novel visuo-tactile interactive perception framework- ViTract, is introduced for shape estimation of unseen objects. Our framework estimates the shape of diverse objects robustly using low-dimensional, efficient, and generalizable shape primitives, which are superquadrics. The probabilistic formulation within our framework takes advantage of the complementary information provided by vision and tactile observations while accounting for associated noise. As part of our framework, we propose a novel modality-specific information gain to select the most informative and reliable exploratory action (using vision/tactile) to obtain iterative visuo/tactile information. Our real-robot experiments demonstrate superior and robust performance compared to state-of-the-art visuo-tactile-based shape estimation techniques.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11250-11257"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720798","citationCount":"0","resultStr":"{\"title\":\"ViTract: Robust Object Shape Perception via Active Visuo-Tactile Interaction\",\"authors\":\"Anirvan Dutta;Etienne Burdet;Mohsen Kaboli\",\"doi\":\"10.1109/LRA.2024.3483037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An essential problem in robotic systems that are to be deployed in unstructured environments is the accurate and autonomous perception of the shapes of previously unseen objects. Existing methods for shape estimation or reconstruction have leveraged either visual or tactile interactive exploration techniques or have relied on comprehensive visual or tactile information acquired in an offline manner. In this letter, a novel visuo-tactile interactive perception framework- ViTract, is introduced for shape estimation of unseen objects. Our framework estimates the shape of diverse objects robustly using low-dimensional, efficient, and generalizable shape primitives, which are superquadrics. The probabilistic formulation within our framework takes advantage of the complementary information provided by vision and tactile observations while accounting for associated noise. As part of our framework, we propose a novel modality-specific information gain to select the most informative and reliable exploratory action (using vision/tactile) to obtain iterative visuo/tactile information. Our real-robot experiments demonstrate superior and robust performance compared to state-of-the-art visuo-tactile-based shape estimation techniques.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11250-11257\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720798\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720798/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720798/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在非结构化环境中部署机器人系统的一个基本问题是如何准确、自主地感知以前未见过的物体的形状。现有的形状估计或重建方法要么利用视觉或触觉交互探索技术,要么依赖于以离线方式获取的全面视觉或触觉信息。在这封信中,我们介绍了一种新颖的视觉-触觉交互式感知框架--ViTract,用于估计未见物体的形状。我们的框架使用低维、高效和可通用的形状基元(即超四边形)来稳健地估计各种物体的形状。我们框架中的概率公式利用了视觉和触觉观察所提供的互补信息,同时考虑了相关噪声。作为框架的一部分,我们提出了一种新颖的特定模态信息增益,用于选择信息量最大、最可靠的探索性动作(使用视觉/触觉),以获取视觉/触觉迭代信息。与最先进的基于视觉-触觉的形状估计技术相比,我们的真实机器人实验证明了其卓越而稳健的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViTract: Robust Object Shape Perception via Active Visuo-Tactile Interaction
An essential problem in robotic systems that are to be deployed in unstructured environments is the accurate and autonomous perception of the shapes of previously unseen objects. Existing methods for shape estimation or reconstruction have leveraged either visual or tactile interactive exploration techniques or have relied on comprehensive visual or tactile information acquired in an offline manner. In this letter, a novel visuo-tactile interactive perception framework- ViTract, is introduced for shape estimation of unseen objects. Our framework estimates the shape of diverse objects robustly using low-dimensional, efficient, and generalizable shape primitives, which are superquadrics. The probabilistic formulation within our framework takes advantage of the complementary information provided by vision and tactile observations while accounting for associated noise. As part of our framework, we propose a novel modality-specific information gain to select the most informative and reliable exploratory action (using vision/tactile) to obtain iterative visuo/tactile information. Our real-robot experiments demonstrate superior and robust performance compared to state-of-the-art visuo-tactile-based shape estimation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信