{"title":"点到平面误差最小化的概率退化检测","authors":"Johan Hatleskog;Kostas Alexis","doi":"10.1109/LRA.2024.3484153","DOIUrl":null,"url":null,"abstract":"Degeneracies arising from uninformative geometry are known to deteriorate LiDAR-based localization and mapping. This work introduces a new probabilistic method to detect and mitigate the effect of degeneracies in point-to-plane error minimization. The noise on the Hessian of the point-to-plane optimization problem is characterized by the noise on points and surface normals used in its construction. We exploit this characterization to quantify the probability of a direction being degenerate. The degeneracy-detection procedure is used in a new real-time degeneracy-aware iterative closest point algorithm for LiDAR registration, in which we smoothly attenuate updates in degenerate directions. The method's parameters are selected based on the noise characteristics provided in the LiDAR's datasheet. We validate the approach in four real-world experiments, demonstrating that it outperforms state-of-the-art methods at detecting and mitigating the adverse effects of degeneracies.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11234-11241"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization\",\"authors\":\"Johan Hatleskog;Kostas Alexis\",\"doi\":\"10.1109/LRA.2024.3484153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degeneracies arising from uninformative geometry are known to deteriorate LiDAR-based localization and mapping. This work introduces a new probabilistic method to detect and mitigate the effect of degeneracies in point-to-plane error minimization. The noise on the Hessian of the point-to-plane optimization problem is characterized by the noise on points and surface normals used in its construction. We exploit this characterization to quantify the probability of a direction being degenerate. The degeneracy-detection procedure is used in a new real-time degeneracy-aware iterative closest point algorithm for LiDAR registration, in which we smoothly attenuate updates in degenerate directions. The method's parameters are selected based on the noise characteristics provided in the LiDAR's datasheet. We validate the approach in four real-world experiments, demonstrating that it outperforms state-of-the-art methods at detecting and mitigating the adverse effects of degeneracies.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11234-11241\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723766/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723766/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Degeneracies arising from uninformative geometry are known to deteriorate LiDAR-based localization and mapping. This work introduces a new probabilistic method to detect and mitigate the effect of degeneracies in point-to-plane error minimization. The noise on the Hessian of the point-to-plane optimization problem is characterized by the noise on points and surface normals used in its construction. We exploit this characterization to quantify the probability of a direction being degenerate. The degeneracy-detection procedure is used in a new real-time degeneracy-aware iterative closest point algorithm for LiDAR registration, in which we smoothly attenuate updates in degenerate directions. The method's parameters are selected based on the noise characteristics provided in the LiDAR's datasheet. We validate the approach in four real-world experiments, demonstrating that it outperforms state-of-the-art methods at detecting and mitigating the adverse effects of degeneracies.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.